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ABSTRACT
Severe wildland fires are modeled based on the fundamental theories of
combustion and fluid mechanics. The k-¢&¢ model of turbulence is employed. A
model of severe wildland fuels is given by a trade-off between computational
demands and a simple but realistic model. The field is divided into inner
region around the burning ring and outer region. And then the problem is
analysed by using the method of matched asymptotic expansions. The outer
problem is reduced to a direct problem, and the inner problem is reduced to a

quasi-2D problem of flow, heat transfer and combustion.
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INTRODUCTION
The severe wildland fire behavior has highlighted the need for a method of
assessing the danger of extremely severe fires and predicting their behavior.
At the moment the data that is available for prototype burns and laboratory
scaling is too scant to provide the necessary correlation and there does not
seem much hope that it will be forthcoming in the foreseeable future. The
numerical simulation is seen as the cheapegt and yet realistic approach to
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understanding severe fire behaviour. ’ For this reason, a mathematical

model is needed that will predict the growth and spread of large fires.

ANALYSIS BY THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

Wildland fires generally spread in the form of a narrow burning ring

g

(1a) (1b)
Fig.1 A fire spreads in a narrow burning ring enlarging with time (1a)
and the cross plane (1b).
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enlarging with time, with the ring curvature radius R(€,t)»1 being much larger
than its cross-scale of O(1), as shown in fig.1 . A Cartesian coordinate
system is defined, with x-axis along the wind direction, z-axis in the
vertical direction. To solve the problem by the method of matched asymptotic
expansions, the flow field is divided into two separate asymptotic regions,
i.e. the inner region of slender ring around the burning ring with the
cross-scale of O(1) and the outer region.

A. Outer problem

In the outer region, x,y,z=O(R). According to the conservation of mass and
energy, the variations of velocity and temperature due to the fire are of
0(1/R). The asymptotic expansions of outer velocity and temperature are

T ()T + g7 (07,2, TT g T (03,5t) + o), (2-1)
where U'(z) is the wind speed. The energy equation reduces to

g‘f'rx*“‘z’g?rfn.—l‘l!? AT (2-2)
where Re and Pr are Reynolds number and Prandtl number of outer problem.
Noticing that the Reynolds number R.:U—g%(n), one can see that T‘=0. The
governing equations of V’(x,y,z,t) are
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so that 31=0.

Intuitively, the disturbance of the narrow burning ring in the outer region
acts to repel of the fluid. In addition, the ring shrinks to the line T:
r=R(@,t), the center line of the ring, as seen by an outer observer.
Therefore, it is inferred that Vt can, be represented by a concentrated line
source along the line T, i.e.

o(s ,t)ds
[ 3 : y (2-4)
r f(xi-x)z'l~(y1-}')2"'z2
From the conservation of mass, it can be inferred that the unknown line source
o(si,t) is the distribution of the mass expansion of the inner region.‘
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B. Inner problem of gaseous part

To account for the interactions between the fuels and the gas in the inmer
region, the fuels and the gas are considered as the solid and the gaseous part
of a porous bed respectively. A local Cartesian coordinate system (n,7,z) is
set also with its origin at P(s) on I' and with the n- axrl"r-a.xes normal and
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tangent to I' at P(s) respectively in the horizontal plane, as sketched in fig.
1. The asymptotic expansions for density p, mass fractions of fuel and oxygen
L mox; velocity components u, v, w in the coordinate system (n,7,z);
enthalpy h, turbulence energy k, and turbulence energy dissipation £ can be
written in the same form

9=0° (n,7,2,t) 420" (n,7,2,t)40 (1/R). (2-5)
Noticing the fact that the scales of the inner region are O(1) in the n- and
z-directions, and O(R) in the T-direction, the governing equations to first
order approximation for the gas phase in the inner region are as follows
continuity equation

3p.3(pu) ,3(pw) _,a
e Lk (2-6a)
momentum equations
3(pu) ,8(puu) d(puw)_aoP,, 3, 8u,, 8 3w 3u &
3t *—an 5z~ on'lam Mam gk, (nter HUS) (2-6)
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3(pw) ,8(pwu) ,3(pww) _3P, 3 3w du 3, dw &
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energy equation
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species equations
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k-£ model of turbulence

3(pk) ,d(puk) 3(pwk)_ 8, 3k, 3,. 3k
€ " an gz antan ez o Pe -Gl
Flux model of heat radiation
sntats gm 49, 4B (q, ;) (2-63)
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Q =2a(q_+q,-2E) E=oT*, (2-61)
with p =cok’/e
G=p, (G H Gy Gy G (G - .‘,’,:—: o]
c=0.09 c’=l .44 °z=1'92 l‘h=l“_u=!‘°x=l'k=r€=l, (2-7)

where 8 stands for the mass flow rate from the solid to the gas, the source
terms in brackets, { }, are valid only within the porous bed; Q" is the heat
transfer rate from gas to solid; hm refers to the enthalpy of the released
hm=S LN T T e 2 ) g : v e
a. and Q.o 8re mass fractions of fuel and water vapor in the released gas; o
is Stefan-Boltzmann'’s constant, a, S are absorption and emission coefficients
of medium in unit length. For the sake of brevity, the superscript of the
first-order solution is omitted in the above eq\ntmns

These governing equations can be written into a general form

d(p¢) 3(pug) 3(pwe)_0 0¢] .0 a¢ -
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where ¢ stands for dependent variables, I' ¢ for the exchange coefficient and S A
for the source term for the corresponding variable ¢.

Weak boundary conditions are employed at all open boundaries, i.e.
as r’=n’+z° 4,

o(s,t) o(s,t)

for v'<0, u:UwoosB+-ﬁ—cos(e) v=Uwsina$—;F—coe(9) w=0  hzh
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(2-10)
where N is the normal to the open boundary, B is the angle between 7- and
x-axes, 9=t.z'1(z/n). The boundary conditions on the wall are given as 2z=0,

u=v=w=k=¢ =0 ah_aml‘u_anox_o
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where a is the emission coefficient of the ground.

C. Model of wildland fuels

Wildland fuels are divided by kind, live degree, and spatial distribution.
If all these factors are considered together, the fuel model must be too
complicated to use. If only one factor is considered, the result will be
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deviated from the real procedure. Therefore, a compromise has to be made
between accuracy and practicality. For this reason, the following assumptions
| are introduced:

(i) wildland fuels can be roughly divided into two classes: (a) the fuel
with its scale being of 1mm at least at one direction, such as grasses,
leaves, etc., the time scale of its pyrolysis is small compared with that of
fire behaviour; (b) the circular cylinder fuel with its diameter scale being
10mm. Both of the two class fuels consists of fuel and water with the mass
fractions a::), a;;;, i=1,2. For the scales of fuels are small compared with
the cross-scale of the burning ring, these mass fractions are assumed as the
continuous functions of space. For the later class, the pyrolysis rate and
water vaporization rate with its temperature are given as follows from the
chemical dynamic equations

5 <2 . __@
8,,5@. 'k exp (-E1/T) 8 420" %20k, oXP (-E3/T), (3-1)

where ki, kz’ Ex’ and E2 are the reaction rate and energy parameters of
fuels.®

(ii) The fuel vapor comes from vaporization of the pyrolysis of the porous
fuel bed. A simple one-step irreversible reaction model is used to describe
the combustion. A unit mass of fuel combines with s mass units of oxygen to
give (1+4s) units of products, s here refers to the stoichoimetric ratio of
fuel and oxygen. As the mixing process is predominant in controlling the
reaction rate for wildland fires, the local reaction rate is expressed with

the Magnussen’s version of Spalding’s eddy-break-up model
m m
P

R‘_u=Apﬁmixtnm, %’ m)’ (3-2)

vhere A and B are constants given the value 4 and 2 respectively.®

(iii) It is not possible to know the details of motion of gas within the
porous bed in the small scale. Fortunately, our interest is on the relatively
large scale motion from the practical point of view. The method of porosity is
used to simulate the porous fuel bed, as proposed by Fan (1985, 1991).7’8 The
porosity is a proportion of a cell through which fluid can flow. Both the
volume porosity and surface porosity are introduced. They express the
proportions of volume and surface of a cell respectively, which are available
for fluid flow in the cell. Porosity can be as factors incorporated into the
discretized equations,® '

(p¢VPov) 2 -
FT+¥[(pV¢—F¢M )xpoil—(s¢vpov)|> (3-3)
ize,s,w,n -
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where V stands for the volume of a cell; Pov and Poi for the volume porosity
and surface porosity of the cell respectively; the subscript i=e,s,w,n for the
east, south, west, and north surfaces of the cell.

CONCLUSIONS

Sever wildland fires have been formulated by using the method of matched
asymptotic expansions. The outer flow is reduced to a cool laminar flow to
second-order approximation, consisting of the stratified uniform wind and the
potential flow induced by a line source along the burning ring with its
strength determined by the first-order inner problem. The inner region has
been considered as a porous bed with fuels and gas. The inner problem of
gaseous part is reduced as a quasi 2-D problem of flow, heat transfer and
combustion in the inner region. The 3-D effect in the inner region is due to
the interaction of mean flow and turbulent fluctuation.

In addition, the fire in inner region is different from the burning of
material of uniform phase due to the existence of gas flow and combustion, and
their interactions within the bed. The processes have been modeled by a set
of governing equations of gas phase with appropriate modifications of their
source terms and numerical treatment of introducing volumetric and surface
porosity of each cell into the discretized equations.
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