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ABSTRACT 

This paper presents an overview of bifurcation theory and the continuation method used to predict 
extinction limits of flames. Complete derivation of the continuation method is presented, together with 
the physical and mathematical assumptions applied to simplify the governing equations.  

 

 
INTRODUCTION 

Prediction of the ignition and extinction limits of exothermic reactions has many important 
applications. Since methane is the major constituent of natural gas, an understanding of the ignition 
and extinction properties of methane is crucial if combustion processes are to be employed safely and 
efficiently in industry. 

In general, there are two classes of gaseous fuel flames – premixed and diffusion flames. In premixed 
flames, the reactants (fuel and oxidiser) are premixed before entering the reaction zone. If the 
composition and physical conditions of the combustible gases are specified, the compositions, pressure 
and temperature of the burnt gas in the final combustion state and the characteristics of the flame are 
determined uniquely1. In diffusion flames the fuel and oxidiser are initially separated and mix in the 
same region that the reaction occurs. Hence combustion occurs at an interface between the fuel gas 
and the oxidant gas, and the burning process depends more on the rate of mixing of the fuel and 
oxidiser than on the rates of the chemical processes involved1. Steady-state premixed and diffusion 
flames have been the subjects of extensive theoretical and computational research. Flame 
characteristics have been analysed primarily for two flow configurations – the flat plate boundary 
layer2-4 and stagnation point flow5-11. Work on these configurations has comprised of experimental, 
analytical and numerical investigations.  

These two configurations are convenient because the flow field is well understood and the two spatial 
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dimensions of the system can be reduced to one dimension by a similarity transformation5. Such 
systems are able to produce multiple steady-state solutions that characterise the ignition and extinction 
behaviour12. A formal analysis on the flow past a body of revolution incorporates both configurations. 

A widely applied method for analysis of the two configurations has been the perturbation or 
asymptotic method6,8-10. However, steady-state bifurcation theory is now more widely used13-17. In 
many physical problems, some observable quantity depends on a parameter describing the physical 
state. As the parameter is increased, a critical value is reached at which the observable quantity 
suddenly changes its character. The critical value is called a bifurcation point18.  

Ignition and extinction may be regarded as bifurcations of the system. There are several advantages of 
bifurcation analysis over a perturbation or asymptotic analysis, the most important being that ignition 
and extinction can be regarded as being the same type of bifurcation, called a simple fold bifurcation12, 
and hence only one type of computational algorithm is required for both ignition and extinction limits. 

This paper is organised as follows. In the next section a complete mathematical analysis for the flow 
past a body of revolution is presented, including an analysis of the geometry and scaling arguments 
that lead to the so-called boundary layer equations, as well as the transformation of these equations 
into a system of coupled non-linear boundary value problems – the continuation equations. Discussion 
of the assumptions is subsequently presented.  

 

 
THEORETICAL 

Consider the boundary layer formed by an incompressible Newtonian fluid flowing past a body of 
revolution. A plane section through the axis of symmetry of the body is shown in Figure 1. The 
equation of the axially symmetric surface is given by: 

 ( )zfr =  (1) 

An orthogonal curvilinear coordinate system can be defined such that: 

 x1 ≡ x = arc length measured along the body in a plane of constant θ 

 x2 ≡ y = arc length measured along straight lines normal to the body 

 x3 ≡ θ = azimuthal cylindrical coordinate measured around the axis of the body 

 

 

 

 

 

Figure 1:  Flow past a body of revolution. 

The shape of the body suggests planar flow, defined by: 
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 ( ) ( ) 0,,,,,, 321 =≡=≡=≡ vvtyxvvvtyxvvv yyxx θ  (2) 

It can be shown via the arc length formula that:  

 [ ] 2
1

21 −′+= f
dx
dz

 (3) 

where the prime indicates differentiation with respect to z. It can be shown that for the coordinate 
system defined above the metric coefficients are given by: 

 

( )

[ ]
2

2
3333

2222

2
1111

2
1

1ˆˆˆˆ

1ˆˆˆˆ
1ˆˆˆˆ

⎟
⎠
⎞⎜

⎝
⎛ ′++=⋅==⋅=

=⋅==⋅=
+=⋅==⋅=

−fyfgg

gg
ygg

yyyy

xxxx

θθθθ

κ

gggg

gggg
gggg

 (4) 

The gradient of a scaler and the divergence, curl and vector Laplacian of a vector in terms of the unit 
spatial vectors θgggggg ˆ,ˆ,ˆˆ,ˆ,ˆ 321 yx≡  and metric coefficients ≡332211 ,, ggg  θθggg yyxx ,,  may be 
calculated using expressions found in19. 

 

Differential mass conservation 

The differential mass conservation equation is given by20: 

 ( ) 0=⋅∇+
∂
∂ vρρ

t
 (5) 

With ( ) ( ) ( )yxtyxvv yx ,,,,0,, ρρ ==≡ vv  and Equation 4, each term of Equation 5 can be 
calculated with the aid of expressions found in19. Hence the differential momentum conservation 
equation may be written as: 
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where κ is the negative value of the curvature of the curve defined by Equation 1: 

 
[ ]

( )x
f

f κκ =
′+

′′−
≡

2
3

21
 (7) 

and the function h is given by: 

 [ ] ( )yxhyffh ,1 2
1

2 =+′+≡  (8) 

Differential momentum conservation 

The differential momentum conservation equation is given by20: 
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where T is the stress tensor and D is the rate of deformation tensor given by: 

 ( )[ ] DIvT μμκ 23
2 +⋅∇−+−= P    ,   ( )TvvD ∇+∇= 2

1
2
1  (10) 

Now, by assuming ( )tμμ ==⋅∇ ,0v  it can be shown that: 

 vT 2∇+−∇=⋅∇ μP  

In combustion, body forces fi may be neglected[20], and using the vector identity21: 

 ( ) vvvvvv ×∇×−⋅∇=∇⋅ 2
1  

the invariant form of the differential momentum balance becomes: 
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With ( ) ( )tyxvv yx ,,0,, vv =≡  and Equation 4, each term of Equation 11 can be calculated with the 
aid of expressions found in19. Hence the differential momentum conservation equation may be written 
as: 
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y-component: 
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θ-component: 
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Differential energy conservation 

The differential energy conservation equation is given by20,22: 
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where q is the heat-flux vector given by: 
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It can be shown that Equation 15 may be written as22: 
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where S is the viscous portion of the stress tensor given by: 

 ITS P+=  (18) 

and ji is the mass flux of species i with respect to v given by: 

 ( )vvj −= iii ρ  (19) 

and wi is the rate of production of species i per unit volume by homogenous chemical reactions, often 
expressed as the phenomonological expression of chemical kinetics: 
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With 0=⋅∇ v  Equation 18 becomes: 

 DS μ2=  (20) 
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For an ideal gas: 
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From the differential mass conservation equation ( ) ( )vv iρρ ⋅∇==⋅∇ 0 , hence from Equation 19: 

 0=⋅∇ ij  (22) 

In combustion, Dufour effects and body forces fi may be neglected20, and it is assumed that ( )tμμ = .  
With these assumptions and Equations 20, 21 and 22, Equation 17 becomes: 
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With ( ) ( ) ( ) ( ) ( ) ( )θ,,,,,,0,,00,,0,,0,, , yxPPtyxTTqVtyxvv RyRiyiyx =====≡ q,V,vv  and 
Equation 4, each term of Equation 23 can be calculated with the aid of expressions found in19. The 
calculation of ( )DD ⋅tr  is laborious, and is simply presented here: 
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Hence the differential energy conservation equation may be written as: 
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Differential chemical species conservation 

The differential chemical species conservation equation is given by20: 

 ( )iiii
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 (25) 

With ( ) ( ) ( ) ( )0,,0,,,,,0,, ,iyiiiyx VtyxYYtyxvv ===≡ V,vv  and Equation 4, each term of 
Equation 25 may be calculated with the aid of expressions found in19. Hence the differential chemical 
species conservation equation may be written as: 
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Boundary-layer approximation – scaling arguments 

Initially, the following dimensionless variables were defined: 
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In Figure 1 it is illustrated (on an exaggerated scale) the velocity distribution in the immediate 
neighbourhood of the body of revolution. The thickness of this boundary layer decreases as NRe 
increases. The thickness of the boundary layer can be magnified by introducing the following 
dimensionless variables: 
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Substituting the above dimensionless variables into the differential mass, momentum, energy and 
chemical species conservation equations and taking the limit 1Re >>N , as well as realising that for a 
fixed wall configuration 0** →κ  in the limit 1Re >>N , the following is obtained: 

Differential mass conservation: 
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Differential momentum conservation: 

x-component: 
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y-component: 

 0**

*

=
∂
∂
y
P

 (29) 

θ-component: 

 0
*

=
∂
∂
θ
P

 (30) 

Differential energy conservation: 
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Differential chemical species conservation: 
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The primes in Equation 27 now indicate differentiation w.r.t. z*. Note that in the above equations it has 
been assumed for the purposes of scaling arguments that all the transport properties are constant. From 
Equations 29 and 30 it can be seen that: 

 ( ) ( )xPPxPP =⇒= ***  (33) 

From Equation 3 it is seen that: 
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hence Equation 49 may be written as: 
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Transformation 

From Equations 27 to 34 it can be seen that the differential conservation equations for flow past a 
fixed-wall configuration body of revolution in the limit 1Re >>N  are given by: 

Differential mass conservation: 
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Differential energy conservation: 
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Differential chemical species conservation: 
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The diffusion velocity Vi is determined from the multicomponent diffusion equation20: 
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Neglecting body forces, Soret effects, and pressure-gradient diffusion, Equation 39 becomes: 
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If the binary diffusion coefficients of all pairs of species are equal, ijDD ≡  and it can be shown that 
Equation 40 reduces to: 
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 ( )[ ]ii YD ln∇−=V  (41) 

Equation 41 is commonly known as Fick’s Law. Recalling that ( )0,,0 ,iyi V=V , from Equations 4 and 
expressions found in19, Equation 41 yields: 

 
y
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DVY i
iyi ∂

∂
−=,  (42) 

The free stream (tangential) velocity at the edge of the boundary layer for stagnation flow is given 
by23: 

 ( )xvaxv xexe ==  (43) 

where a is the strain rate, which may be assumed constant for stagnation flow. Substituting Equation 
43 into the differential momentum conservation equation yields: 
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where the pressure in the free stream, Pe, is equal to the pressure in the boundary layer, P, in planes of 
constant x since from Equation 33 ( )xPP = . This is Bernoulli’s Law for the pressure distribution in 
the boundary layer5. Substituting Equations 42 and 44 into the differential balances yields the 
following: 

Differential mass conservation: 
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Differential momentum conservation: 
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Differential energy conservation: 
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Differential chemical species conservation: 
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The boundary-layer equations for multicomponent, reacting, ideal-gas mixtures, Equations 45 to 48, 
are reduced to their ‘locally similar’ form by introducing a change of variables s, η that combines the 
Levy-Mangler and Howarth-Dorodnitzyn transformations20,24. These change of variables are: 

 ( )∫ ==
x

xeee xsdxfvs
0

2μρ    ,   ( ) ( )yxdyyx
s
fv y

xe ,,
2 0

ηρη == ∫  (49) 

The modified stream function ψ is then introduced, which satisfies the following equations: 
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x
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such that the differential mass balance is automatically satisfied. Next, a function ( )tsF ,,η  is 
introduced that is related to the modified stream function via: 
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The reason for the form of Equation 51 will become apparent when the velocity components in terms 
of the new variables defined by Equation 49 are calculated. From Equation 50: 
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From Equation 43, 49 and 52 the differential momentum balance is transformed to: 
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where τ is a dimensionless time and β is a dimensionless parameter given by: 
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From Equation 43, 49 and 52 the differential energy balance is transformed to: 
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where Θ is a dimensionless temperature given by: 
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Assuming 1Pr <<NN Br , the differential energy conservation equation becomes: 
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From Equations 43, 49 and 52 the differential chemical species balance is transformed to: 
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where DN Sc ρμ= . 

 

 
DISCUSSION 

The differential conservation equations of momentum, energy and chemical species for the flow of a 
multicomponent, reacting, ideal gas mixture past a fixed configuration body of revolution in the 
neighbourhood of a stagnation point are given by: 
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where F is related to the modified stream function ψ via: 

 ( ) ( )
s

tyxtsF
2

,,,, ψη =  

and η and s are dimensionless distances given by: 
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and β is a dimensionless parameter, τ is a dimensionless time, and Θ is a dimensionless temperature 
given by: 
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The assumptions in deriving the above equations are: 

1. Planar flow defined by:      
 ( ) ( ) ( ) ( )tyxYYtyxTTvtyxvvtyxvv iiyyxx ,,,,,,0,,,,,, ===== θ  

2. 0=⋅∇ v , ( ) ( ) ( ) ( ) ( )0,,00,,0,0,,, , RyRiyii q,VtPPtyx ===≠== qVf,μμρρ  

3. Ideal gas: 
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4. 1Re >>N  

5. Fixed wall configuration i.e. 0** →κ  for 1Re >>N  

6. Soret and Dufour effects and pressure-gradient diffusion are neglected 

7. The binary diffusion coefficients of all pairs of species are equal i.e. ijDD ≡  

8. The strain rate, a, is constant 

9. 1Pr <<NN Br  

 

The assumption of planar flow (assumption (1)), the diffusion velocity vector given by 
( )0,,0 ,iyi V=V  and the radiant heat-flux vector given by ( )0,,0 RyR q=q  are derived from 

geometrical considerations. The assumption that ( ) ( )tyx ρρρ ≠= ,  allows the introduction of a 
stream function ψ via Equation 50 such that the differential mass balance is automatically satisfied. 
The assumption that ( ) ( )yxt ,μμμ ≠=  allows significant simplification of the stress tensor T, 
defined by Equation 9. 

In deriving the differential conservation equations it was assumed that the divergence of the velocity 
field, v⋅∇ , was equal to zero. This is a mathematical assumption to simplify the derivation, not a 
physical assumption. The fact that 0=⋅∇ v  does not imply that the flow is incompressible. From the 
differential mass conservation equation (Equation 5), if incompressible flow is assumed, the density, 
ρ, is constant, resulting in the differential mass conservation equation reducing to 0=⋅∇ v . Thus, 



Proceedings, 5th AOSFST, Newcastle, Australia, 2001 
Editors: M.A. Delichatsios, B.Z. Dlugogorski and E.M. Kennedy 

 
 

 421

constant density implies 0=⋅∇ v , but initially assuming 0=⋅∇ v  does not imply that the density is 
constant. Hence the mathematical assumption that 0=⋅∇ v  does not imply that incompressible flow 
is assumed. 

The assumption that the ideal-gas law is valid (assumption (3)) allows certain variables to be related to 
the dependent variables in the differential conservation equations via the ideal-gas equation of state: 

 ∑
=

=
N

i i

i

W
Y

RTP
1

ρ  

and also allows vast simplification of the differential energy conservation equations since: 
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Justification for the use of the ideal-gas law follows from the assumption of 0=⋅∇ v  and 
( ) ( )yxt ,μμμ ≠= , which results in the stress tensor reducing to: 

 DIT μ2+−= P  

Performing the trace operation to both sides of the stress tensor gives the following expression: 

 ( )Ttr3
1−=P  

From this equation it follows that, essentially by definition, the ideal-gas law is valid even for non-
equilibrium systems20. 

Assumption (4) is simply a mathematical statement of the boundary layer approximation, and 
assumption (5) follows from the fact that only fixed boundaries are considered. 

From Equation 41 it can be seen that Fick’s Law is valid when assumptions (2) (specifically when 
0=if ),  (6) and (7) are satisfied. Because of the complex form of the multicomponent diffusion 

equation (Equation 39), in many combustion problems Fick’s Law is utilised in order to make the 
governing equations tractable. The use of Fick’s Law in combustion theory is partially justified by the 
fact that thermal diffusion (Soret effects) are negligible since the dimensionless ratio 1, <<ijiT DD ρ  
for all pairs of gaseous species i and j, in general 0=if , and pressure-gradient diffusion is negligible 
since 1<<∇ PP . Thus concentration-gradient diffusion is the dominant part of the multicomponent 
diffusion equation. 

In general, the assumption that the binary diffusion coefficients of all pairs of species are equal is the 
most difficult assumption to justify in combustion problems20. If it is not assumed that the binary 
diffusion coefficients of all pairs of species are equal, the multicomponent diffusion equation with the 
remaining assumptions reduces to Equation 40, which is known as the Stefan-Maxwell Equation. This 
Equation is more complicated to employ in combustion theory than Fick’s Law, since it is not readily 
solvable for the diffusion velocities Vi in terms of concentration gradients – it instead provides 
concentration gradients in terms of diffusion velocities20. 

From Equation 16 the Dufour heat flux is given by: 
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In nearly all cases (not just combustion theory) the Dufour effect is so small that it is negligible, even 
when thermal diffusion (the Soret effect) is not negligible20. 

The assumption of constant strain rate, a (assumption (8)), is justified by the fact that the present study 
is concerned with stagnation flow and the analysis is restricted in the neighbourhood of a stagnation 
point. The assumption allows the use of Bernoulli’s Law for the pressure distribution in the boundary 
layer (Equation 44) and results in a vast simplification of the transformation into the continuation 
equations by defining: 

 a
dx

dvxe ≡  

From the definitions of the Brinkman and Prandtl numbers it can be seen that the ratio 1Pr <<NN Br  
is given by: 
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In general ( )3
0 10~ Ov  and ( )210~ OT  so that ( ) 1ˆ 0

2
0 <<− ∞TTcv p , hence it may be assumed that 

1Pr <<NN Br  in combustion problems. Note, however, that to retain the term involving the radiant 
heat flux in the y-direction, qRy, in Equation 31, this assumption is applied following the 
transformation of the differential conservation equations into the continuation equations. In other 
words, the assumption that 1Pr <<NN Br  is not a boundary-layer assumption like assuming 

1Re >>N , but is a statement of considerations found in combustion problems. 

The above assumptions results in a simplified transport model which has been applied previously 
(with modification) in many combustion studies5,10,12,23,25-38. Many levels of accuracy of transport in 
multicomponent mixtures have been addressed in the literature36,39,40 and comparison of simplified 
transport models with more detailed ones for methane-air flames has shown that transport is not 
crucial for accurate modelling of flame structures and velocities41.  

Finally, this paper should be considered a work in progress. A sound understanding of the equations 
that will be used to predict the extinction limits of flames is necessary before further work and new 
results are presented. The aim of this paper was to provide this sound understanding, and will be an 
important reference to later publications by the authors. 
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NOMENCLATURE 

A  strain rate 

Bk  constant in the frequency factor for the kth reaction 

pĉ   specific heat capacity per unit mass at constant pressure 

D  rate of deformation tensor 

D  global binary diffusion coefficient 

Dij  binary diffusion coefficient for species i and j 

DT,i  thermal diffusion coefficient for species i 

Ek  activation energy for the kth reaction 

f  funtion defined by r = f(z) 

*f   dimensionless function defined by 0
* Lff =  

fi  external/mutual force per unit mass on species i 

F  function defined by ( ) ( ) styxsF 2,,,, ψτη =  

gij  defined by jiijg gg ˆˆ ⋅=  

iĝ   orthonormal spatial vector field 

h  defined by [ ] yffh +′+≡ 2
1

21  

iH   partial mass specific enthalpy of species i 

*
iH   dimensionless enthalpy defined by ( )∞−= TTcHH pii 0

* ˆ  

I  unit tensor 

ji  mass flux vector relative to v for species i 

Lo  characteristic length 

M  total number of chemical reactions occurring 

N  total number of chemical species present 

NBr  Brinkman number ( )∞−= TTλμvN Br 0
2
0  

NPr  Prandtl number λμcN pˆPr =  

NRe  Reynolds number μLρvN 00Re =  

NRu  Ruark number 0
2
0 PρvN Ru =  
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NSc  Schmidt number DN Sc ρμ=  

NSt  Strouhal number 000 LvtN St =  

P  modified mean hydrostatic/thermodynamic pressure 

*P   dimensionless pressure defined by 0
* PPP =  

Po  characteristic mean hydrostatic/thermodynamic pressure 

qRy  y-component of radiant heat flux vector 

*
Ryq  dimensionless y-component of radiant heat flux vector defined by 3

0
* vqq RyRy ρ=  

**
Ryq  dimensionless y-component of radiant heat flux vector defined by 

3
0Re

*
Re

** vqNqNq RyRyRy ρ==  

q  energy flux vector 

qR  radiant heat flux vector 

r  radial coordinate 

R  universal gas law constant 

s  dimensionless coordinate defined by ( )∫ ==
x

xeee xsdxfvs
0

2μρ  

S  extra stress or viscous portion of the stress tensor 

t  time 

to  characteristic time 

*t   dimensionless time defined by 0
* ttt =  

T  temperature 

*T   dimensionless temperature defined by ( ) ( )∞∞ −−= TTTTT 0
*  

To  reference temperature 

T∞  ambient temperature 

T  stress tensor 

Û   internal energy per unit mass for the gas mixture 

iv   component of v in direction xi 

vx  component of velocity defined by 1vvx ≡  

vy  component of velocity defined by 2vvy ≡  
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**
yv  dimensionless y-component of velocity defined by 0Re

*
Re

** vvNvNv yyy ==  

vθ  component of velocity defined by 3vv ≡θ  

vo  characteristic magnitude of velocity 

vxe  free stream velocity 

v  mass-average velocity of the gas mixture 

*v   dimensionless velocity defined by 0
* vvv =  

vi  velocity of species i 

Vi  diffusion velocity of species i 

*
iV   dimensionless diffusion velocity of species i defined by 0

* vii VV =  

Vy,i  y-component of Vi 

**
,iyV   dimensionless y-component of Vi defined by 0,Re

*
,Re

**
, vVNVNV iyiyiy ==  

V̂   volume per unit mass 

Wi  molecular weight of species i 

wi rate of production of species i by chemical reactions (mass per unit volume per unit 
time) 

*
iw  dimensionless reaction rate defined by ρ0

* tww ii =  

x coordinate defined by x ≡ x1 

*x  dimensionless coordinate defined by 0
* Lxx =  

xi orthogonal curvilinear coordinate 

Xi mole fraction of species i 

y coordinate defined by y ≡ x2 

*y  dimensionless coordinate defined by 0
* Lyy =  

**y  dimensionless coordinate defined by 0Re
*

Re
** LyNyNy ==  

Yi mass fraction of species i 

z axial coordinate 

*z   dimensionless axial coordinate defined by 0
* Lzz =  
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Greek Symbols 

αk exponent determining the temperature dependence of the frequency factor for the kth 
reaction 

β  dimensionless constant defined by ( ) 222 fvas xeeeμρβ =  

η  dimensionless distance defined by ( ) ( ) ( )yxdyyxsfv
y

xe ,,2
0

ηρη == ∫   

κ  curvature/bulk viscosity coefficient 

*κ   dimensionless curvature defined by 0
* Lκκ =  

**κ   dimensionless curvature defined by κκκ Re0
*

Re
** 1 NLN ==  

λ  thermal conductivity 

μ  coefficient of (shear) viscosity 

μe  free stream viscosity 

kiν ,′   stoichiometric coefficient for species i appearing as a reactant in reaction k 

kiν ,′′   stoichiometric coefficient for species i appearing as a product in reaction k 

θ  coordinate defined by θ ≡ x3 

Θ  dimensionless temperature defined by ( )∞−=Θ TTT 0  

ρ  mass density 

ρe  free stream density 

ρi  mass density of species i 

τ dimensionless time defined by βτ at=  

ψ  modified stream function 
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