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ABSTRACT

The objective of this study is to develop a prototype data-driven wildfire simulator capable of forecasting
the fire spread dynamics. The prototype simulation capability features the following main components: a
level-set-based fire propagation solver that adopts a regional scale viewpoint, treats wildfires as propagat-
ing fronts, and uses a description of the local rate of spread (ROS) of the fire as a function of vegetation
properties and wind conditions based on Rothermel’s model; a series of observations of the fire front posi-
tion; and a data assimilation algorithm based on an Ensemble Kalman Filter (EnKF). Members of the EnKF
ensemble are generated through variations in estimates of the fire ignition location and/or variations in the
ROS model parameters; the data assimilation algorithm also features a state estimation approach in which
the estimation targets (the control variables) are the two-dimensional coordinates of the discretized fire front.
The prototype simulation capability is first evaluated in a series of verification tests using synthetically-
generated observations; the tests include representative cases with spatially-varying vegetation properties and
temporally-varying wind conditions. The prototype simulation capability is then evaluated in a validation
test corresponding to a controlled grassland fire experiment. The results indicate that data-driven simulations
are capable of correcting inaccurate predictions of the fire front position and of subsequently providing an
optimized forecast of the wildfire behavior.

KEYWORDS: wildfire, fire modeling, front tracking, level set, data assimilation, Ensemble Kalman Filter

NOMENCLATURE LISTING

c progress variable
d innovation vector
H observation operator
K gain matrix
Mv fuel moisture content (%)
m
′′
v fuel loading (kg/m2)

Ne number of members in the EnKF ensemble
N f r number of points in discretized simulated fire front
No

f r number of points in discretized observed fire front
n f r fire front normal vector
p probability density function (PDF)
P forecast or analysis error covariance matrix
r (integer) ratio between N f r and No

f r
R observation error covariance matrix
uw wind velocity (m/s)
x,y two-dimensional coordinates (m)
x control vector
yo observation vector

Greek
Γ rate of spread of the fire (ROS, in m/s)
δv fuel depth (m)
∆hc heat of combustion (J/kg)
ε error treated as a random variable
ρp fuel particle mass density (kg/m3)
σ standard deviation of the error
Σv fuel surface-to-volume ratio (1/m)
Superscript
a analysis
f forecast
o observation
t true
Subscript
e ensemble
i front marker index
ign ignition
t time
v vegetation
w wind
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1. INTRODUCTION

Computer-based wildfire spread modeling has emerged during the past two decades as a powerful tool for
applications in both fire risk management and fire emergency response. However, because the underlying
wildfire dynamics feature complex multi-physics occurring at multiple scales, our ability to accurately sim-
ulate the behavior of wildfires remains limited [1]. The dynamics of wildfires are determined by interactions
between pyrolysis, combustion, flow dynamics as well as atmospheric dynamics. These interactions occur at:
vegetation scales that characterize the biomass fuel; topographical scales that characterize the terrain and veg-
etation boundary layer; and meteorological micro/meso-scales that characterize atmospheric conditions. The
mathematical models proposed to simulate wildfire spread are limited because of their inability to cover the
entire range of relevant scales, because also of knowledge gaps and/or inaccuracies in the description of the
physics as well as knowledge gaps and/or inaccuracies in the description of the controlling input parameters
(i.e., the vegetation, topographical and meteorological properties).

Relevant insight into wildfire dynamics has been obtained in recent years via detailed numerical simulations
performed at flame scales (i.e., with a spatial resolution on the order of 1 m). For instance, FIRETEC [2] or
WFDS [3] combine advanced physical modeling and classical methods of Computational Fluid Dynamics
(CFD) to accurately describe the combustion-related processes that control the fire spread. Note that be-
cause of their high computational cost, flame-scale CFD is currently restricted to research projects and is
not compatible with operational applications. In contrast, we adopt in the following a regional-scale view-
point (i.e., a viewpoint that considers scales ranging from a few tens of meters up to several kilometers), in
which the fire is described as a two-dimensional flame front that self-propagates normal to itself into unburnt
vegetation; the local propagation speed is called the rate of spread (ROS). This viewpoint is the dominant ap-
proach used in current operational wildfire spread models, see for instance BehavePlus [4] and FARSITE [5]
in the United States, the MacArthur Fire Danger Meters [6] in Australia and the Forest Fire Behavior Pre-
diction System (FBPS) [7] in Canada. For instance, BehavePlus and FARSITE use a semi-empirical model
due to Rothermel [8] that treats the ROS as a function of vegetation (fuel) properties associated with a pre-
defined fuel category (i.e., the vertical thickness of the fuel layer, the fuel moisture content, the fuel particle
surface-to-volume ratio, the fuel loading and the fuel particle mass density), topographical properties (i.e.,
the terrain slope) and meteorological properties (i.e., the wind velocity at mid-flame height). A limitation in
semi-empirical approaches is that the ROS model does not explicitly account for the interaction of the fire
and the atmosphere and has a domain of validity that is limited to the conditions of the calibration experi-
ments used during its original development. Another limitation shared by all fire spread models is that the
input parameters that determine the ROS (i.e., vegetal fuel properties, terrain topography, wind conditions)
are often unknown or are only known with limited accuracy.

The uncertainties inherent in wildfire spread modeling suggest the use of ensemble forecasts: ensemble fore-
casts stochastically characterize the non-linear response of models to variations in the input data. For instance,
Finney et al. [9] describes an ensemble-based forecasting capability based on possible weather scenarios and
moisture content evolution. Furthermore, recent progress made in airborne remote sensing provides new ways
to monitor real-time fire front positions [10,11]. Ensemble-based data assimilation (DA) techniques that inte-
grate these fire sensor observations into a computer modeling tool provide an attractive framework to correct
and optimize the model outputs and to thereby produce improved forecasting capabilities. In this framework,
the DA algorithm is sequentially applied; each sequence (also called the analysis cycle) is decomposed into
two steps: 1) a prediction step in which the control variables (i.e., model state and/or parameters) are advanced
in time given some uncertainty ranges in the model input data; 2) an update step based on Bayes’ theorem
in which new observations are considered and the probability density function (PDF) of the control variables
is modified consistently with the observations in order to reduce the uncertainties in the model outputs [12–
14]. The Kalman filter (KF) is the most commonly used sequential DA technique. However, KF assumes
linear dynamics and a Gaussian statistical distribution for both modeling and observation errors. Extensions
of KF that overcome in part these limitations have been proposed, for instance the Extended Kalman Filter
(EKF) [12] that uses local linearization techniques and the Ensemble Kalman filter (EnKF) [15] that uses a
stochastic description of the model behavior.

The present study is an extension of our previous work in Refs. [16, 17] in which a prototype data-driven
wildfire simulation capability was developed. The initial prototype featured the following main components:
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a level-set-based fire propagation solver combined with a model description of the local ROS proposed by
Rothermel [8]; a series of observations of the fire front position; and an EKF-based data assimilation algo-
rithm. The DA prototype was successfully evaluated when applied for estimation of the parameters used in
the Rothermel-based ROS model (e.g., the vertical thickness of the fuel layer, the fuel moisture content, the
fuel particle surface-to-volume ratio, and/or the wind direction and magnitude); the evaluation was performed
in the context of a controlled grassland fire experiment. While the studies presented in Refs. [16,17] produced
encouraging results and confirmed the value of a DA strategy for improved wildfire spread predictions, some
of the design choices made during the initial development of the prototype simulator were proposed on a
preliminary and temporary basis with the understanding that they would have to be re-visited in subsequent
work. The most questionable choices were the selection of the EKF algorithm and that of the stand-alone pa-
rameter estimation approach. The choice of the EKF algorithm is considered questionable because it assumes
a linear relationship between the control variable space and the observation space (i.e. a linear relationship
between changes in the parameters of the Rothermel-based ROS model and the resulting changes in the fire
front position); this linear assumption is believed to be of limited value in general wildfire problems. The
modification to an EnKF approach was explored in Ref. [18]. In this work, some of the non-linearities in
the relationship between control variable space and observation space were taken into account as these are
stochastically characterized over an ensemble of simulations. The choice of a parameter estimation approach
is also considered questionable: while well-suited for statistically spatially-homogeneous problems (in which
corrections to the parameters of the ROS model can be applied uniformly), this choice is no longer adapted
to more general wildfire problems in which the vegetation, topographical and possibly meteorological prop-
erties exhibit arbitrary spatial variations. The extension to the estimation of spatialized vegetation/wind ROS
parameters would be indeed computationally prohibitive in the context of real-time forecast of the fire behav-
ior. The objective of the present study is to remove some of the main limitations in the initial design of our
prototype data-driven wildfire simulator.

This study is a continuation of our previous studies presented in Refs. [16–18] and an extension to the case
of spatially-varying vegetation properties and temporally-varying wind conditions. This extension is based
on a change from a parameter estimation approach to a state estimation approach. This change was inspired
in part by previous studies by Mandel et al. [19–21], in which the control variable is the temperature field
and is characterized by a bimodal PDF in the fire region (burning state or not-burning state). In order to
satisfy the Gaussian assumption in EnKF, the idea of morphing from image processing was introduced [19];
however, this choice led to technical difficulties in the EnKF implementation. In the present study, the control
variable is the fire front position and is characterized by an approximate Gaussian PDF, which allows for
a straightforward application of EnKF. The paper is organized as follows. The fire front observations and
the wildfire spread model (called FIREFLY) are presented in Section 2. The EnKF algorithm is presented in
Section 3. The performance of the resulting data-driven wildfire simulation capability is evaluated in Section
4 using first, academic tests in which observations are synthetically-generated and second, a validation test in
which observations are taken from a controlled grassland fire experiment.

2. FIRE FRONT OBSERVATIONS AND SIMULATIONS

Observations of the fire front position

We assume in the present study that observations of the fire front position are available and that these observa-
tions can be made at different relevant times. Note that there is a growing body of literature on recent techno-
logical developments for geo-referenced wildfire front tracking, see for instance [10,11]. So far, spaceborne
and airborne systems observe fires in the Middle InfraRed (MIR) region but only airborne platforms pro-
vide spatial and temporal resolution suitable for real-time geo-location of active fire contours. For instance,
Paugam et al. [11] show that spatio-temporal variations of the rate of spread of the fire can be accurately
retrieved using a Fire Radiative Power (FRP) analysis on a thousand-meter-square controlled fire experiment.

In the following, the observed fire front is represented as a segmented line using a pre-defined number of
equally-spaced markers (the observation points); the observation vector, noted yo

t , contains the two-dimensional
coordinates (xo

i ,y
o
i ) of the fire front markers (the subscript i is the index of a particular marker in the obser-

vation vector) observed at time t. The fire front coordinates are assumed to have independent Gaussian-like
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random errors εo with zero mean and with standard deviation noted σo. Two types of tests are presented
in Section 4: Observation System Simulation Experiments (OSSE) in which observations are synthetically
generated using a reference solution of the fire spread model (called the true evolution) modified by random
observation errors εo; and a controlled grassland fire experiment in which the observations are reconstructed
from measured temperature maps and using a definition of the fire front as the 600 K iso-temperature contour.

The fire spread model (the forward model)

The front-tracking solver, called FIREFLY, simulates the propagation of surface wildland fires at regional
scales (ranging from a few tens of meters up to several kilometers) as illustrated in Fig. 1. The solver is
currently limited to flat terrains and problems with complex topography are outside the scope of the present
study. FIREFLY tracks the time evolution of the fire front location using the following three components:

• A sub-model for the rate of spread. The expression for the local ROS, noted Γ, proposed by Rother-
mel [8] may be written as:

Γ = Γ(x,y, t) = Γ

(
δv(x,y),Mv,Mv,ext ,Σv,m

′′
v ,ρp,∆hc,uw(t)

)
(1)

where input parameters are summarized in Table 1. In the following, the wind velocity uw is treated
as a time-dependent, spatially-uniform quantity; the fuel depth δv is treated as a time-independent,
spatially-varying quantity; all other parameters are treated as constant and uniform (note that these are
simplifications and that more complex and realistic choices can be made).

c = 1!

c = 0!
fire front!

Rate of spread!

Burned vegetation (c = 1) 

Unburnt vegetation (c = 0)!

cfr= 0.5!

2-D computational domain!

�
cfr = 0.5!

(x,y)!

Wind uw!

�

x
y

nfr

Fig. 1. Level-set-based fire spread simulator. Left: the fire front is the isocontour c f r = 0.5; Γ measures the
local rate-of-spread of the fire along the normal direction n f r. Right: profile of the spatial variations of the

progress variable c across the fire front.

Table 1. Input parameters in the Rothermel-based ROS model.

Name Symbol Unit
Fuel depth (vertical thickness of the vegetation layer) δv m
Fuel moisture (mass of water divided by mass of dry vegetation) Mv -
Fuel moisture at extinction Mv,ext -
Fuel particle surface-to-volume ratio Σv 1/m
Fuel loading m

′′
v kg/m2

Fuel particle mass density ρp kg/m3

Fuel heat of combustion ∆hc J/kg
Wind velocity vector at mid-flame height (projected into horizontal plane) uw m/s

• A level-set-based solver for the fire front propagation equation. A progress variable noted c = c(x,y, t)
is introduced as a flame marker: c = 0 in the unburnt vegetation, c = 1 in the burnt vegetation, and the
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flame is the region where c takes values between 0 and 1 (the flame front is identified as the isocontour
c f r = 0.5). The progress variable is calculated as a solution of the following propagation equation:

∂c
∂t

= Γ |∇c| , (2)

where Γ is modeled using Eq. (1). Equation (2) is solved using a second-order Runge-Kutta scheme
for time-integration and an advection algorithm for spatial discretization based on a second-order total
variation diminishing (TVD) scheme combined with a Superbee slope limiter [17,22].

• An isocontour algorithm for the reconstruction of the fire front. Once the spatio-temporal variations
of the progress reaction c are known, the position of the fire front is extracted using a simple iso-
contour algorithm such that, formally, the outputs of the FIREFLY model are [(xi,yi),1 ≤ i ≤ N f r] =
M[t−1,t](ct−1,λ), where (xi, yi) represents the two-dimensional coordinates of the N f r fire front mark-
ers obtained at time t, where ct−1 designates the initial condition (i.e., the spatial distribution of the
progress variable c at time (t − 1)) and where λ designates the list of input parameters of the ROS
model, λ = (δv,Mv,Mv,ext ,Σv,m

′′
v ,ρp,∆hc,uw) (see Table 1). Thus, the forward model operator M[t−1,t]

is a composition of the integration of Eq. (2) to obtain the progress variable c at time t and of the
isocontour algorithm that identifies and discretizes the flame contour c = 0.5.

3. THE ENSEMBLE-BASED DATA ASSIMILATION ALGORITHM

Comparison between simulations and observations

Simulated front  
(cfr = 0.5) 

 

Observed  
front 

(x1, y1)

(x2 , y2 )

(x3, y3)

(x4 , y4 )

(x1
O, y1

O )

(x2
O, y2

O )

dt ,1

dt ,2
c = 0

c =1

Fig. 2. Construction of the innovation vector dt introduced to quantify the differences between simulated
and observed fire fronts. In this illustration, r = 4.

The data assimilation algorithm uses a discretization of both the simulated and observed fire fronts, called
SFF and OFF, respectively. The discretization of SFF is a set of N f r markers; the control vector xt , also
called the state vector, contains the two-dimensional coordinates of the markers at time t, xt = [(x1,y1), . . . ,
(xN f r ,yN f r)]. Similarly, the discretization of OFF is a set of No

f r markers; the observation vector yo
t is defined

as yo
t = [(xo

1,y
o
1), . . . , (x

o
N f r

,yo
No

f r
)]. Note that the FIREFLY solver uses a high-resolution computational grid

that allows for a detailed representation of the local conditions (the spatial resolution is on the order of 1 m).
In contrast, observations of the fire front position are likely to be provided with a much coarser resolution; in
addition, observations may be incomplete and cover only a fraction of the fire front perimeter. Thus we may
expect No

f r to be much lower than N f r; in the following, we assume for simplicity that No
f r = (N f r/r) where

r is an integer taking values (much) larger than 1. In order to map the state variable space (SFF) onto the
observation space (OFF), an observation operator H is introduced that selects a subset of No

f r markers among
the fine-grained discretization of SFF and pairs each one of those markers with one of those used in the
coarse-grained discretization of OFF (see Fig. 2). The observation operator H may be defined in several ways
(for instance using a projection scheme) but preliminary tests have shown that a simple treatment (taking 1
out of every r points) provided reasonable results; this issue will be re-visited in future work. The innovation
vector, noted dt , is now simply defined as the vector formed by the directed distances between the paired



SFF-OFF markers:

dt = yo
t −H(xt). (3)

The statistical moments of dt (e.g., mean and standard deviation) provide a convenient measure of the devia-
tions of model predictions from observations.

The Ensemble Kalman Filter algorithm

The objective of data assimilation is to estimate the state vector xt using the observations yo
t made at time t

(see Fig. 3). In the prediction step, the PDF of the state vector is evolved from time (t− 1) until time t. We
note p f (xt) this PDF (also called the forecast PDF) at time t. At the analysis time t, also called the update
step, this forecast PDF is corrected in order to be more consistent with the observations yo

t . The new PDF,
called the analysis and noted pa(xt), is given by Bayes’ theorem:

pa(xt) ∝ p(yo
t |xt) p f (xt), (4)

where the symbol ∝ means ”proportional to” and where p(yo
t |xt) represents the data likelihood, i.e. the

conditional PDF of having the observations yo
t given the state xt .

Analysis fire 
front at t!

xa
t = (xi

f,yi
f), i in [1,Nfr]  

Analysis fire 
front at t-1!

xa
t-1=(xi

f,yi
f), i in [1,Nfr]  

Forecast!
 fire front at t!

xf
t =(xi

f,yi
f),i in [1,Nfr]  

Forward model  
Level-set based fire spread simulator  

Mt-1,t(xa
t-1) = xf

t 
 

Observed fire 
front at t!

yo
t = (xi

f,yi
f), i in [1,Nfr

o]  

Solve Inverse Problem 
EnKF algorithm  
xa

t = xf
t + Kt,e dt 
 
 

forecast 1  

forecast k  

Covariance  
 ensemble estimate 

Compare simulation 
and observation 

 dt = yo
t - H(xf

t)  Pf
t,e 

analysis 1  
analysis k  

Fig. 3. Flow chart of the EnKF algorithm during the [t−1, t] analysis cycle.

The EnKF algorithm assumes that both the model state xt and the observations yo
t are random variables

defined by Gaussian PDF with a zero mean value and an error covariance model. Under these assumptions,
the forecast PDF may be written as:

p f (xt) ∝ exp
{
−1

2

(
xt −x f

t

)T
(P f )

−1
(

xt −x f
t

)}
, (5)



where x f
t is the forecast estimate of the true state vector and where P f is the forecast error covariance matrix

representing modeling errors. The data likelihood may be similarly expressed as:

p(yo
t |xt) ∝ exp

{
−1

2

(
yo

t −H(xt)
)T

R−1
(

yo
t −H(xt)

)}
, (6)

with R the observation error covariance matrix representing observation errors. Within this framework, the
analysis PDF is also Gaussian and is written as:

pa(xt) ∝ exp
{
−1

2

(
xt −xa

t

)T
(Pa)−1

(
xt −xa

t

)}
, (7)

where xa
t is the analysis estimate of the true state vector and where Pa is the analysis error covariance matrix.

The classical Kalman filter algorithm assumes that the observation operator H is linear (denoted by H); in
that case, it may be shown that the analysis update in Eq. (7) leads to the following equations:

xa
t = x f

t +K(yo
t −H(x f

t )), K = P f HT (HP f HT +R)−1, Pa = (I−KH)P f , (8)

where K is called the gain matrix. The expressions in Eq. (8) are the basis of the EKF algorithm used in
Refs. [16,17].

In contrast, the Ensemble Kalman Filter (EnKF) algorithm approximates the forecast PDF of the state vec-
tor p f (xt) by performing a series (an ensemble) of Ne independent forward model integrations up to the
analysis time t, thereby providing Ne forecast estimates of the state vector, called the ensemble members
x f

t,e = [x f ,1
t ,x f ,2

t , ...,x f ,Ne
t ]. The EnKF algorithm approximates the mean and the covariance of the forecast

by the mean and the covariance of the ensemble, while still making the assumption that all PDF are Gaus-
sian. During the analysis, each ensemble member is updated using the classical Kalman filter formulation in
Eq. (8), with the difference that the gain matrix K is now calculated from an estimate of the forecast error
covariance matrix, noted P f

e , and using the ensemble-based stochastic representation of the relationship be-
tween state space and observation space. Note that in the present study, we use the EnKF version proposed
by Burgers et al. [23], and assume that the observation errors are uncorrelated, i.e. the observation error
covariance matrix R is treated as a diagonal matrix in which each diagonal term is the error variance (σo)2

associated with the x- or y-coordinate of the OFF markers.

4. EVALUATION OF THE DATA-DRIVEN SIMULATION CAPABILITY

We first present results from OSSE experiments in which synthetic observations are generated from a refer-
ence FIREFLY solution using particular values of the ROS model input parameters and a particular ignition
location (the true state is thus known and can be represented by the model). The OSSE tests are representative
of field-scale fires where the rate of spread takes values on the order of 10 cm/s. Because in real-world appli-
cations, the measurements will be sparse and imperfect, we study the sensitivity of the data-driven solution
to the standard deviation of the observation error, σo, to the number of observation points along the fire front,
No

f r, and to the level of completeness of the observations. We then present results from a validation study in
which observations are taken from an experimental database corresponding to a controlled grassland fire (a
case for which it may not be possible to represent the true state with the FIREFLY model). This validation
study corresponds to a real reduced-scale fire in which the rate of spread takes values on the order of 1 cm/s.

Observation System Simulation Experiments (OSSE)

In the first series of OSSE tests, the numerical configuration corresponds to a 200 m × 200 m domain with
uniform vegetation properties and no wind; the ROS is constant and uniform and is taken equal to 0.2 m/s.
The computational grid resolution is ∆x = ∆y = 1 m and the temporal resolution is ∆t = 0.5 s. The true fire
front is initialized as a circular front centered at (xign,yign) = (100 m, 100 m) and with a radius of 5 m. The
FIREFLY model is first integrated in time in order to produce at the analysis time (chosen to be t = 200 s)
the true fire front position. An ensemble of Ne = 25 forecasts is then produced based on spatial variations of
the ignition location (xign,yign) around a mean value (97 m, 103 m) and with a standard deviation of 10 m, see
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(c) EnKF performance versus σo.

Fig. 4. Spatially-uniform OSSE test with constant ROS but uncertain ignition location; single analysis cycle;
all figures correspond to time t = 200 s. (a) Comparison between true (solid line) and forecasted (dashed
lines) fire front positions; the cross symbol is the observation. (b) Similar comparison between true (solid

line) and analyzed (dashed lines) fire front positions. (c) Averaged distance between the true and forecasted
fire front positions (squares) and between the true and analyzed fire front positions (triangles) as a function

of the observation error standard deviation σo.

Fig. 4(a). In this first configuration, uncertainties in the forecast ensemble are only due to the initial location
of the fire. The simulated fire fronts are discretized using N f r = 100 points.

Figure 4(a) presents a comparison between the true and the forecasted fire front positions at time t = 200 s and
shows that due to uncertainties in the ignition location of the fire, the predicted front positions are scattered
over a large area. Since in this test, uncertainties in the distribution of the vegetation properties are not taken
into account in the generation of the ensemble, the propagation of the front is isotropic (simulated fire fronts
remain circular). Thus, within the ensemble, the errors in the position of the N f r simulated fire front markers
are highly correlated. As a result, the DA algorithm translates the information observed at one point into a
uniform correction along the fire front. Figure 4(b) presents the comparison between the true and the analyzed
fire front positions, i.e., the updated front positions that are produced by the EnKF algorithm at the end of
the analysis cycle (at time t = 200 s), when only one observation is available (black cross). As expected,
the analyzed front positions feature a much reduced scatter, they are located close to the true front position
and the EnKF correction is isotropic. It should be noted that when several observations are used, the analysis
produces a circular-shaped fire fronts located at an optimal distance of the observations.

The results in Fig. 4(b) were produced with a low value of the observation error standard deviation, σo = 1 m,
and Fig. 4(c) examines the influence of this error on the EnKF performance. Figure 4(c) presents the root
mean square (RMS) distance between the true and the forecasted fire front positions and between the true
and the analyzed fire front positions as a function of the magnitude of the observation errors measured by σo;
the vertical bars in Fig. 4(c) give a graphical representation of the magnitude of the standard deviations in the
forecast and analysis ensembles. The figure shows that when the observation error is small, the EnKF algo-
rithm successfully drives the analysis ensemble towards the true state; in contrast, when the observation error
is large, the EnKF algorithm has reduced effects and the analysis ensemble remains close to the forecast en-
semble; for intermediate values of the observation error, the EnKF algorithm produces optimized predictions
lying between forecast and observation. These different regimes illustrate how data assimilation combines
information from both models and observations, and produces better results that those that would be obtained
if models or observations were considered separately. In the following tests, the observation errors are as-
sumed to be small and the performance of EnKF will be evaluated by its ability to track the observed fire
front location.

Next we present results from a second series of OSSE tests, the numerical configuration corresponds to a
700 m × 700 m domain with spatially-varying vegetation properties and with wind; the ROS is estimated
using Rothermel’s model; the fuel depth is assumed to be spatially-varying taking different values in the
4 quadrants of the square-shaped computational domain. The FIREFLY model is first integrated in time
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(starting from a small circular front) in order to produce at the analysis time (chosen to be t = 400 s) the true
fire front position. An ensemble of Ne = 20 forecasts is then produced based on assumed uncertainties in the
ROS input model parameters, specifically the fuel depth, moisture content and particle surface-to-volume-
ratio, (δv, Mv, Σv), the wind velocity vector uw (i.e., magnitude and direction), as well as uncertainties in the
ignition location (xign,yign). Thus, in this second configuration, uncertainties in the forecast ensemble are now
due to spatial variations in as many as 10 input parameters (4 values of δv for the 4 quadrants, plus values
of Mv, Σv, uw and (xign,yign)); corresponding values for the means and standard deviations are presented in
Table 2 (the wind parameters are presented in terms of a magnitude and a direction angle). The simulated fire
fronts are discretized using N f r = 100 points. The observation error standard deviation is small, σo = 1 m.

Table 2. Properties of the ensemble forecast in the spatially-varying OSSE test.

Input parameter True value Mean ensemble value Standard deviation
(δv,1, δv,2, δv,3, δv,4) [m] (0.25, 1.25, 0.75, 1.75) (0.25, 1.25, 0.75, 1.75) (0.10, 0.10, 0.10, 0.10)
Mv [%] 20 20 10
Σv [1/m] 11500 11500 4000
uw [m/s, deg] (1.0, 315) (0.75, 315) (0.15, 45)
xign [m] 350 350 20
yign [m] 350 350 20

Figure 5(a) presents a comparison between the true and the forecasted fire front positions at time t = 400 s
and shows that due to uncertainties in the fire spread model parameters, the predicted fire fronts deviate
significantly from the true state. In contrast to previous results presented in Fig. 4(a), the propagation is now
anisotropic and the present fire fronts are characterized by stronger irregularities and more complex shapes;
these features are the consequence of both the presence of wind and the spatial variations in fuel depth.
Figure 5(c) presents a similar comparison between the true and analyzed fire front positions. As expected, the
analyzed front positions feature a much reduced scatter in terms of fire front shapes and are located close to the
true front position. Since the anisotropy of the propagation is now represented by a wide range of uncertainties
in the ensemble, the error in the location of one observed point is only correlated with the error in the location
of the other adjacent points along the fire front. The DA algorithm translates the information coming from one
observation point into a correction restricted to the closets neighbors only. As a consequence, when several
observations are available, a non-uniform correction is obtained and the DA algorithm is then able to change
the shape of the fire front and more easily match the observations.

Figure 5(b) examines the influence on the EnKF performance of the number of uniformly-distributed obser-
vation points along the front. This figure presents the RMS distance between the true and the forecasted fire
front positions and between the true and the analyzed fire front positions as a function of No

f r. The figure
shows that when No

f r is large (see Fig. 5(c) where No
f r = 20), the EnKF algorithm successfully drives the

analysis ensemble towards the true state; in contrast, when No
f r is small, the EnKF algorithm has reduced

effects and the analysis remains close to the forecast. In other words, the performance of the DA algorithm
and its ability to capture the high-resolution features of the fire front depend strongly on the density of the
observation network.

While Figs. 5(b)-(c) show that the direct observation of the fire front position can overcome various un-
certainties in the wildfire spread model parameters, Fig. 5(d) illustrates that the spatial distribution of the
observations along the fire contour has a significant impact on the analysis. This figure considers a practically
relevant situation in which the observations are limited to a certain section of the fire front (the informed
section) and therefore provide an incomplete picture. In this situation, while the EnKF algorithm produces
an analysis that is close to the true state in the informed section, the benefits of data assimilation are much
reduced in the non-informed sections. It is worth pointing out, however, that despite a reduced level of per-
formance, EnKF informed by incomplete observations remains capable of improved performance compared
to a stand-alone forecast.
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Fig. 5. Spatially-varying OSSE test with uncertain ROS model parameters and uncertain ignition location;
single analysis cycle; all figures correspond to time t = 400 s. (a) Comparison between true (solid line) and

forecasted (dashed lines) fire front positions. (b) Averaged distance between the true and forecasted fire front
positions (squares) and between the true and analyzed fire front positions (triangles) as a function of the

number of observation points along the fire front No
f r. (c) Comparison between true (solid line) and analyzed

(dashed lines) fire front positions; the cross symbols are the observations. (d) See caption of Fig.(c); case of
an incomplete set of observations.

We now consider multiple analysis cycles for the spatially-varying OSSE test and examine the behavior
of the forecast between successive observations or after the last observation is made. The true fire front
spread is simulated for time-varying wind conditions, whereas the forecast ensemble is simulated for constant
wind conditions, using the parameters presented in Table 2. The performance of the forecast is expected to
deteriorate in time for two reasons. First, because the impact of the fire front correction at a previous time
decreases as the forecast lead time increases. Second, because the present implementation of the EnKF does
not provide any correction for ROS modeling errors or any correction for uncertainties in the ROS model
input parameters (including the incorrect assumption of a constant wind). Such corrections may be introduced
through a parameter estimation approach, see Refs. [16–18]. In this test, we apply the EnKF algorithm over
four successive analysis cycles: the EnKF update is performed at times t1 = 150 s, t2 = 300 s, t3 = 450 s and
t4 = 600 s.

Figure 6(a) presents a comparison between the averaged forecasted fire front positions, the observations
(considered to be close to the true state) and the averaged analyzed fire front positions at time t2 = 300 s
and t4 = 600 s. Similar to the results obtained in previous OSSE tests, the RMS distance to the true front
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is significantly reduced by EnKF, from 20 m for the forecast to less than 1 m for the analysis (see also the
curve with square symbols in Fig. 6(b)). Figure 6(b) shows the typical cyclic evolution of the deviations of
model predictions from observations: during the update step of the analysis cycle n, the analysis provides a
correction to the front position and the distance between the true state and the forecast is greatly reduced;
the analysis ensemble at the end of cycle n provides the initial conditions for the next cycle (n+ 1); during
the prediction step of cycle (n+ 1), the wildfire spread model simulates the fire evolution (i.e., produces a
forecast) but the distance between the true state and the forecast increases significantly; during the update
step of the analysis cycle (n+1), the distance between the true state and the forecast is again reduced and the
cycle may be repeated. For instance, in Fig. 6(b), the curve with circles correspond to an averaged forecast
that has been updated at time t1 = 150 s, thereby leading to a close approximation of the true state; without
additional observations, this forecast is seen to deviate from the true state (the RMS distance between the true
state and the forecast is approximately 80 m at time t5 = 750 s). In summary, these results show that in a state
estimation approach, the EnKF updates have to be performed at regular time intervals in order to allow for an
accurate tracking of the true fire front position.
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Fig. 6. Spatially-varying OSSE test with uncertain ROS model parameters and uncertain ignition location;
multiple analysis cycles. (a) Comparison between mean forecast (dashed lines), observations (crosses) and

mean analysis (solid lines) at times t2 = 300 s and t4 = 600 s; the small circle in the center of the figure
corresponds to the initial conditions. (b) Averaged distance between the true and forecasted/analyzed fire
front positions as a function of the analysis cycle number; circles correspond to a forecast with no update
(FR); triangles (F1), crosses (F2), diamonds (F3) and stars (F4) correspond to a forecast with an update at
t1 = 150 s, t2 = 300 s, t3 = 450 s and t4 = 600 s, respectively; square symbols correspond to an analysis

performed at times t1, t2, t3 and t4.

Validation study: Application to a controlled grassland fire experiment

We now evaluate EnKF-FIREFLY in a validation study corresponding to a controlled grassland fire experi-
ment. The experimental configuration corresponds to a small (4 m x 4 m), flat and and horizontal, open-field
grassland lot burning under moderate wind conditions. The properties of the grass are (approximately) known:
δv = 8 cm (field measurement), Mv = 22 % (field measurement) and Σv = 11500 m−1 (Rothermel’s fuel model
for short grass); the wind conditions are also approximately known: the magnitude and direction angle of the
wind are constant and equal to 1 m/s and 307 deg. The fire spread is recorded during 350 s using a thermal-
infrared camera; the thermal maps are post-processed (the fire front is defined at the 600 K iso-temperature
contour) and thereby provide full fire contours at 14 s intervals; based on the spatial resolution of the camera,
the estimated standard deviation of the measurement error is σo = 0.05 m. An ensemble of Ne = 50 forecasts
is produced based on assumed uncertainties in the ROS input model parameters, (δv,Mv,Σv,uw) as well as un-
certainties in the initial conditions taken at time t0 = 50 s. When generating the forecast ensemble, the mean
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values of the ROS input model parameters are the known properties of the grass and and known conditions of
the wind; the uncertainties are characterized by relatively large levels, σ(Mv) = 6 %, σ(Σv) = 4000 m−1 and
σ(uw) = (0.4 m/s,45 deg). In addition the grassland lot is divided into 4 equally-sized rectangular-shaped
sections and the fuel depth is treated as different in each zone, δv = 6, 10, 8 and 12 cm, and σ(δv) = 4 cm;
following the conclusions from the OSSE experiements this treatment is adopted in order to generate a rich
forecast ensemble with a wide range of simulated fire front shapes and locations. The uncertainty in the initial
position of the fire at time t0 is also accounted for in the generation of the ensemble, the mean is the observed
fire front position taken from the experiment; the stochastic perturbation corresponds to a shift of the front
along the x-axis; the magnitude of the shift has a standard deviation of 65 cm. Finally, in these simulations,
N f r = 100 and No

f r = 50.

Figure 7 presents a comparison between the averaged forecasted fire front positions, the observations and the
averaged analyzed fire front positions, at time t1 = 64 s and t2 = 78 s. Note that in Fig. 7(b), the mean forecast
(dashed line) is initialized at time t1 by the analysis produced by the first DA cycle (solid line in Fig. 7(a))
while the free forecast (dash-dot line) is initialized at time t0 and does not use any analysis. In Fig. 7(a)
and Fig. 7(b), it is seen that the mean forecast (that illustrates the performance of FIREFLY without data
assimilation) significantly underestimates the rate of spread of the fire; in contrast, the mean analysis (that
illustrates the performance of FIREFLY coupled with EnKF-based assimilation of the experimental fronts)
provides accurate estimates of the fire front position. The agreement between the analyzed and observed fire
front positions is remarkable and significantly better than that previously obtained in Refs. [16, 18] using a
spatially-uniform parameter estimation approach for the same test case. In particular, the analyzed fire fronts
feature a topology that is very close to that of the observed front, a result that requires an accurate and non-
uniform correction of the locations of the fire front markers. However, in spite of the quality of the correction
provided by EnKF, the performance of the forecast remains limited: for instance, Fig. 7(b) shows that the
mean forecast (initialized by the analysis at time t1 and integrated until time t2), while still significantly more
accurate than the free forecast (initialized by the initial conditions at time t0 and integrated until time t2), is
not in agreement with the observation. These results are similar to those obtained in Fig. 6 and suggest that
while a state estimation approach provides excellent forecasting performance at short lead times, this level of
performance is not persistent and needs to be renewed by frequent observations.
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Fig. 7. Validation test performed using data from a controlled grassland fire experiment and EnKF-FIREFLY
results assuming uncertain ROS model parameters and uncertain initial conditions; multiple analysis cycles.

Comparison between initial conditions at time t0 = 50 s (open circles), mean forecast (dashed line),
observations (crosses) and mean analysis (solid line). (a) time t1 = 64 s; (b) time t2 = 78 s; the dash-dot line

is the free forecast obtained without any assimilation.

CONCLUSIONS

This study presents a prototype data-driven wildfire simulator capable of forecasting the fire spread dynam-
ics. The prototype simulator features a regional-scale wildfire spread model coupled with a data assimilation
algorithm based on an Ensemble Kalman Filter (EnKF) and a state estimation approach. The study assumes
that observations of the fire front position are available at frequent times but possibly provide an inaccurate
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and incomplete description of the fire front. The prototype simulator is first evaluated in a series of verifi-
cation tests using synthetically-generated observations and including configurations with spatially-varying
vegetation properties and temporally-varying wind conditions. It is subsequently evaluated in a validation
test corresponding to a controlled grassland fire experiment. The results indicate that data-driven simulations
are capable of correcting inaccurate predictions of the fire front position and of subsequently providing an
optimized forecast of the wildfire behavior. It was demonstrated that in order to allow for a spatially-varying
correction of the front position, the generation of the EnKF ensemble should represent the anisotropy in
fire propagation that results from spatial variations in vegetation properties and from the presence of wind.
This anisotropy was implicitly introduced in EnKF by selecting spatially-dependent vegetation properties
and different wind conditions between the members. Finally, the results also indicate that the forecasting
performance of a state estimation approach is limited to near-term predictions (i.e., short lead times).

Future work will be aimed at developing a dual state estimation/parameter estimation approach that would
overcome the limitations illustrated in the present and past studies. The parameter estimation approach could
be extended to the case of weak spatial variations of the ROS model parameters. Assuming that the errors
on the parameters vary slowly in time, the correction provided by data assimilation can reasonably be used
for forecast, thus allowing for mid- to long-term forecast. In addition, the state estimation approach could
be used for short-term forecast in order to locally correct the shape of the fire front. Furthermore, future
plans also include the extension of the wildfire spread model FIREFLY to treat configurations with complex
topography (the model is currently limited to the case of flat horizontal terrains). Once a complex terrain
capability is available, plans include performing an extensive validation study including representative field-
scale wildfires. And finally, future plans include the integration of the DA algorithm into a CFD atmospheric
model [24] in order to describe the interactions between the fire and the atmosphere. The ultimate goal of this
research is to provide real-time fire forecasts using thermal-infrared imaging data including a description of
both wildfire dynamics and fire plume emissions.
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