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ABSTRACT 

Unstiffened elements affect markedly the resistance of commonly used open steel 
sections under fire conditions. The distinct non-linear material behavior of steel at 
elevated temperatures requires large strains to activate the increase of cross-sectional 
capacity due to plastification. The yield line theory in conjunction with temperature-
dependent second order elastic theory including equivalent geometric imperfections has 
been used to describe the load-carrying behavior of unstiffened elements in compression 
and bending at elevated temperatures in fire. Using both theories, the complete load-
carrying behavior in the pre- and post-buckling range can be analyzed. In addition, the 
results obtained from these analytical solutions were compared to numerical results using 
a geometrical and physical non-linear finite element approach. 

KEYWORDS: structural design, steel constructions, fire resistance, local buckling, yield 
line theory 

NOMENCLATURE LISTING 

Latin Greek 
b width of the element ε strain 
e0,w equivalent geometric 

imperfection 
pλ  non-dimensional plate 

slenderness 
Ea modulus of elasticity of steel µ Poisson’s ratio 
fp proportional limit of steel θa steel temperature 
fε strain-dependent stress of steel σ stress 
fy yield stress ψε strain ratio at the loaded edge 

of the element 
k buckling factor corresponding 

to the strain ratio ψε 
subscripts 

lhw buckle half-wavelength a steel 
Mpl,ε plastic resistance to bending 

moments of the gross section 
calculated with fε  

cr critical 

Npl,ε resistance to axial force of the 
gross section calculated with fε 

p proportional limit 

t thickness of the element ε dependency on strain 
wy deflection of the element θ dependency on temperature 
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INTRODUCTION 

Under fire conditions, steel members heat up rapidly and their strength and stiffness 
decrease. The stress-strain relationship of steel becomes distinctly non-linear, and the 
assumption of a linear-elastic ideal-plastic material behavior used in ambient temperature 
design no longer applies. The material behavior at elevated temperatures requires large 
strains to activate the increase of cross-sectional capacity due to plastification [1]. Open 
thin-walled sections such as C-, U-, and I-sections consist of stiffened and unstiffened 
elements. A stiffened element is defined as a flat element, in which both edges parallel to 
the direction of loading are supported, and an unstiffened element is a flat element, in 
which only one longitudinal edge is supported. Since unstiffened elements are often used 
as parts of cross-sections, accurate calculation methods for the resistance of these 
elements during fires are important. For instance, unstiffened elements used as flanges of 
I-sections in major and minor axis bending have a strong influence on the bending 
resistance. The effective width method is commonly used to consider local buckling and 
to calculate the resistance of unstiffened elements. However, stress-based design methods 
with effective widths are not suitable to analyze the complete load-carrying behavior 
including the decreasing branch; which is necessary to determine the resistance of 
composed sections in fire. Under fire conditions, local buckling needs to be considered 
for a wider range of plate slenderness than in ambient temperature design [1]. The 
mechanism of failure of thin-walled steel sections may be analyzed by using yield line 
theory. In particular unstiffened elements exhibit a local plastic mechanism at collapse. 
An approach based on yield line theory in conjunction with temperature-dependent 
second order linear-elastic theory, taking into account initial geometrical imperfections is 
used in this paper to describe the load-carrying behavior of unstiffened elements at 
elevated temperatures under fire conditions in the pre- and post-buckling range. 

ELASTIC LOAD-DEFLECTION BEHAVIOR 

A complex formula to describe the elastic post-buckling behavior of unstiffened elements 
(steel plates supported on three sides) at ambient temperature was developed by 
Kalyanaraman/Peköz [2]. The analytical solution of square stiffened elements (steel 
plates supported on all four sides) in compression is much easier. The elastic pre- and 
post-buckling behavior of stiffened elements with different in-plane boundary conditions 
may be analyzed using formulae published by Murray [3]. For a square steel plate that is 
simply supported perpendicular to the plane of the plate and free regarding longitudinal 
and transverse displacements in the plane of the plate (with the additional requirement 
that the longitudinal edges have to stay straight), a simple relationship between the mean 
stress θσ ,x  and the deflection in the middle of the plate wy=b/2 is given in Eq. 1 [4]. Based 
on Eq. 1, a formulation for plates with geometrical imperfections e0,w was developed by 
Wittek [5], given in Eq. 2. The equations can be used at elevated steel temperatures 
assuming elastic behavior for the solutions. The temperature-dependent critical buckling 
stress σcr,θ may be calculated with Eq. 3. 
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Figure 1 shows the elastic load-deflection behavior according to Eqs. 1 (Wolmir) and 2 
(Wittek). The results are given for ambient temperature and for a steel temperature of 
500°C. In addition, geometrical non-linear elastic results calculated with the finite 
element approach [6] are presented. The numerical results are almost identical with the 
analytical results. Supplementary, geometrical and physical non-linear numerical 
calculations with initial imperfections were performed and the results for three non-
dimensional plate slenderness ratios calculated at ambient temperature (Eq. 4) are 
presented as examples. 
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The material behavior was assumed to be elastic ideal-plastic for ambient temperature 
and elastic non-linear plastic for elevated temperatures according to [7]. The load-
deflection behavior of stiffened elements with elastic-plastic material behavior at ambient 
temperature is identical with linear-elastic material behavior, until the ultimate load is 
almost reached. The load-deflection behavior of the steel plates at elevated temperatures 
was much softer than at ambient temperature (Fig. 1). The load-deflection curve still 
increased after the elastic-plastic curve diverged from the linear elastic curve, due to the 
non-linear plastic material behavior of steel at elevated temperatures. The load-carrying 
capacity was reached for larger deflections wy=b/2 compared to ambient temperature 
conditions. 
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Fig. 1. Load-deflection behavior of a stiffened square element (simply-supported on  
four sides) at ambient temperature (left) and at a steel temperature of 500°C (right). 
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UNSTIFFENED COMPRESSION ELEMENTS AT ELEVATED TEMPERATURE 

The complete load-deflection behavior of steel columns and plates can be described by 
using geometrical non-linear elastic theory including equivalent geometric imperfections, 
as described in the previous section, in combination with plastic theory. The elastic 
theory is used for the elastic buckling and the second order plastic theory is used for the 
post-buckling range, necessary to analyze ductility. The load-deflection behavior of an 
imperfect pin-ended column of compact cross-section (without local buckling) according 
to second order elastic theory is characterized by an increase of the deflection w with 
increasing axial force N (Fig. 2 left-dotted line). The load-deflection behavior according 
to second order rigid-plastic theory (plastic hinge theory) changes in the opposite 
direction: The resistance N decreases when the deflection w increases. The point of 
intersection represents an upper bound Nu,max of the actual ultimate load Nu of the column, 
considering total elastic behavior of the column until the plastic hinge develops. The 
load-deflection curve of a deformation-controlled experiment (Fig. 2 left-continuous line) 
of a column with elastic ideal-plastic material behavior follows second order elastic 
theory at low loads. Due to the plastification of parts of the cross-section, the structure 
softens and the load-deflection curve falls below the elastic curve. After exceeding the 
ultimate load Nu, the load-carrying capacity of the column decreases with further 
increasing deflections w and converges to the load-deflection curve according to second 
order plastic theory. Differences between the point of intersection Nu,max and the ultimate 
load Nu result from the assumption of total elastic behavior up to failure. The differences 
increase with increasing plastic reserves and depend on the cross-section. For instance, 
the assumption leads to inaccurate results for I-sections in minor axis bending. 

elastic theory plastic theory
rigid-linear-

plastic hinge theory
Second order

linear elastic theory
Second order

Actual behaviour

σ

ε

fyyf

ε

σ

w0

,maxu

u

cr

pl

e

N

N

N

N

N

N

pl,N

N

M

0e

w

N

Theory of bifurcation

we0,w

Second order
yield line theory

Actual behaviour

σ

f y

σ 0,e
w

σcr

σu,max

wplσ ,β

σ

Second order
linear elastic theory

Theory of
bifurcationσu

 
Fig. 2. Load-deflection behavior. Column without local buckling (left); 

 local buckling of a steel plate (right). 

The collapse of thin-walled cross-sections, that develop local buckling is characterized by 
a local plastic mechanism. Local plastic mechanisms may be analyzed using yield lines 
perpendicular and inclined to the direction of thrust. Murray [8] developed an interaction 
formula (Eq. 5) for an axial force N and a bending moment M for yield lines, rotated by 
an angle β to the direction of thrust. This formula is based on a simplified stress criterion; 
the separation of the stress in the inclined yield line into normal stress and shear stress is 
neglected, but the influence on the results is very small for typical values of β. 
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The load-carrying capacity as a function of the deflection was formulated for eight plastic 
mechanisms by Murray/Khoo [9]. Their third mechanism is given in Fig. 3 and may be 
used to analyze unstiffened elements used as the flanges of I- or U-sections. The plastic 
mechanism is made of two inclined yield lines and one yield line perpendicular to the 
direction of thrust. Figure 3 shows a part of the mechanism with the infinitesimal width 
db. Rotational equilibrium of the element results in: 
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Fig. 3. Local plastic mechanism for unstiffened elements. 

The deflection wy of the element was assumed to be linear over the width b, given by 
Eq. 8. 

byy w
b
yw =⋅=  (8) 

Due to the non-linear material behavior of steel at elevated temperatures under fire 
conditions, large deflections wy and corresponding strains ε may result in an increase of 
the resistance and a plastic zone develops. The results show that the approach using yield 
lines instead of plastic zones as well as the assumption of linear deflection over the width 
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(Eq. 8) and the concentration of the curvature of the plate in the yield line was 
sufficiently precise. The advantage of these assumptions is that the relative load-
deflection behavior is independent of temperature. 

An angle β = 45° between the inclined yield lines and the direction of thrust was 
observed experimentally at ambient temperature in [10] and is used in this study. 
Figure 4, e.g., shows the stress distribution for an element with a non-dimensional plate 
slenderness ratio 0.3=λ p  at ambient temperature. The relative stress at the non-
supported longitudinal edge of the plate decreased if the local buckling deflection wy=b 
increased. Therefore, the axial load resistance decreased due to the interaction between 
bending moment M and axial load N of the local plastic mechanism. The local plastic 
mechanism for unstiffened elements does not allow using simple stress blocks in contrast 
to the effective width method (see Fig. 4 right). When Eq. 8 is substituted into Eq. 7, 
which is then integrated, the expression for the relative plastic axial resistance that 
considers local buckling deflections of an unstiffened element is obtained, Eq. 9. The 
distribution of the longitudinal stress σx,θ leads to a bending moment M (formulated in 
Eq. 10 about an axis normal to the plane of the plate through the longitudinal supported 
edge). 
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Fig. 4. Local plastic mechanism. (a) Geometrical  

relationships; (b) Stress distribution. 
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behavior of an unstiffened element in compression  
(ψε = 1.0) at a steel temperature of 500°C. 

Figure 5, e.g., presents the load-deflection curves for a non-dimensional plate slenderness 
ratio 0.3=λ p  – considering the buckling coefficient k = 0.425 + 1/α2 – and a steel 
temperature θa of 500°C. In addition to the results according to yield line theory 
(continuous line) the results according to second order elastic theory considering initial 
imperfections and according to elastic non-linear plastic theory calculated numerically 
are shown by dotted lines. The calculations were performed for unstiffened elements in 
compression (ψε = 1.0). A length-to-width ratio α = 2 was chosen. This corresponded to 
one buckle half-wavelength for the first eigenvalue according to linear elastic theory and 
a local plastic mechanism whose yield lines are inclined at β = 45°. The in-plane 
boundary conditions of the plate were similar to those of calculations for the stiffened 
element presented in the previous section: the edges remain straight, but were free to 
displace in-plane. The local plastic mechanism using yield lines had these boundary 
conditions until the third yield line developed. The third yield line caused a kink at the 
longitudinally supported edge and the strain ratio changed to ψε = 0.0 after development 
of the plastic mechanism. A longitudinal displacement u was obtained at the free edge 
after the development of the three yield lines, while the supported longitudinal edge 
remained unchanged. In numerical calculations this change was not possible and these 
differences between the models resulted in slightly different resistances. 

The finite element calculations were performed for different values of the initial 
imperfection e0,w, temperatures θa between 20° and 1100°C, and temperature-dependent 
linear-elastic and elastic non-linear plastic material behavior according to [7]. Figure 5 
(left) shows the load-deflection behavior of unstiffened elements with initial 
imperfections of e0,w = lhw/2500 and lhw/125 in addition to e0,w = lhw/250. The value of the 
initial imperfection had almost no influence on the load-carrying capacity after exceeding 
the relative maximum. This corresponds to yield line theory, which is independent of 
initial imperfections. The resistance according to this plastic approach is a function of the 
deflection wy=b exclusively. Nevertheless, the initial geometrical imperfections influence 
the elastic load-carrying capacity in the pre- and post-buckling ranges. 
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In addition to an axial load N a bending moment M about the centre of gravity developed 
as a result of the non-linear stress distribution of unstiffened elements. Figure 5 (right) 
shows the relationship between the deflection wy=b and the relative bending moment at the 
longitudinal edge according to Eq. 10. In order to show local buckling effects, the forces 
and moments are presented in relation to the strain-dependent plastic resistance. The 
strain-dependent plastic resistance fε,θ at elevated steel temperatures θa is calculated 
according to [7]. 
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It is further possible to formulate the load-carrying capacity with the load-end shortening 
curve as would be done in deformation-based experiments instead of the load-deflection 
curve. The relationship between the local buckling deflection wy=b and the longitudinal 
displacement uy=b at the non-supported edge for the local plastic mechanism of 
unstiffened elements is shown in Fig. 4 (left) and can be described with Eq. 13. Using the 
approximation (14) and the formulation for the strains leads to the calculation of the 
strain ε as a function of the local buckling deflection wy=b with Eq. 15 (cp. [10]). 
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The relative resistance as a function of the end shortening according to yield line theory 
(continuous line) as well as the load-shortening curves according to elastic and elastic 
non-linear plastic theory calculated numerically (dotted lines) are shown in Fig. 6. 
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Fig. 6. Load-end shortening behavior of unstiffened  

elements in compression (ψε = 1.0). 

As an example, the results are given for a plate slenderness ratio 0.3=λ p  (Fig. 6 right). 
Additionally, the results of a less slender unstiffened element ( 75.0=λ p ) are given in 
Fig. 6 (left). The strain ε is relative to the temperature-dependent strain at the 
proportional limit εp,θ. The relative resistance of the unstiffened element N/Npl,ε,θ at the 
point of intersection between temperature-dependent elastic theory and yield line theory 
(Fig. 6) was in good agreement (identical) to the relative resistance calculated with the 
point of intersection of the load-deflection curve (Fig. 5). The point of intersection was 
approximately at the proportional strain εp,θ as is known from ambient temperature and 
elastic ideal-plastic material behavior. The relative resistance decreased after exceeding 
the proportional limit as for ambient temperature, but the absolute value of the resistance 
could still increase after exceeding the proportional limit due to the non-linear stress-
strain relationship [1]. 

A parametric study for a wide range of plate slenderness ratios confirmed that the point 
of intersection was almost at the temperature-dependent proportional strain εp,θ for 
unstiffened elements in compression with non-dimensional plate slenderness ratios 

0.1>λ p . Using yield line theory results in a decrease of the relative resistance with 
increasing plate slenderness, because the full plastic axial resistance cannot be reached 
for local buckling deflections wy=b larger than zero, independent of the plate slenderness 
ratio (Fig. 6 left). The load-end shortening curve according to elastic non-linear plastic 
theory indicates that the maximum relative resistance of the less slender element is 
reached at the proportional limit as well. 

Starting from the relative load-end shortening behavior given in Fig. 6, a simplified load-
end shortening behavior including the ultimate resistance of the unstiffened element can 
be easily calculated (Fig. 7). Equation 16 is used for the decreasing branch according to 
yield line theory (Fig. 7 left-continuous lines). The load-carrying behavior for strains 
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smaller than the temperature-dependent proportional strain is approximated linearly 
(Fig. 7 left-dotted lines). The whole load-end shortening behavior of unstiffened 
compression elements (Fig. 7 right) may then be obtained as the product of the relative 
load-carrying capacity N/Npl,ε,θ (linear approximation and Eq. 16) and the strain-
dependent ratio of fε,θ to the proportional stress fp,θ (shown in Fig. 7 left-dotted lines). It 
can be seen that for low temperatures and high slenderness ratios the load-carrying 
capacity decreases after exceeding approximately the proportional strain while for high 
temperatures (between 400°C and 800°C) and low slenderness ratios a further increase is 
observed. 
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Fig. 7. Calculation of the load-carrying  

behavior (for steel grade S235). 

UNSTIFFENED BENDING ELEMENTS AT ELEVATED TEMPERATURES 

The bending resistance of I-sections about the minor axis depends only on the flanges. 
The maximum strain of these unstiffened elements is located at the non-supported edge 
and the strain at the supported longitudinal edge (web) is zero. This results in a strain 
ratio ψε = 0.0. By means of the finite element model described in the previous section, 
geometrical non-linear numerical calculations of unstiffened elements in bending at 
ambient and elevated temperatures were performed. As an example, Fig. 8 shows the 
load-end shortening behavior for two different plate slenderness ratios at a steel 
temperature of 500°C for elastic and elastic non-linear plastic material behavior 
according to [7] (dotted lines). In order to verify whether the simplified calculation 
method presented in the previous section is also suitable for unstiffened bending elements 
in fire, the results according to the local plastic mechanism developed for uniform 
compression are also shown (continuous lines). For very large strains the local plastic 
mechanism may also be used in bending because the stress distribution of a compact I-
section (without local buckling) in minor axis bending is assumed to be perfectly plastic 
(stress blocks). Thus, there is no difference in the assumed stress distribution in 
compression (ψε = 1.0) and in bending (ψε = 0.0). This behavior of compact sections was 
applied to slender elements, the stress distribution of slender unstiffened elements being 
assumed to be independent of the strain distribution as well. For smaller strains large 
differences exist between the load-end shortening behavior according to yield line theory 
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(continuous lines) and the actual behavior (dotted lines) calculated numerically. The 
difference between the upper bound of the relative resistance (obtained as the intersection 
point between the linear-elastic load-end shortening behavior and the behavior according 
to yield line theory) and the relative actual resistance calculated with elastic non-linear 
plastic material behavior results from plastic reserves and increase with increasing 
reserves, as was described for columns using compact sections in a previous section. In 
conclusion, temperature-dependent second order elastic theory in conjunction with the 
local plastic mechanism presented in Fig. 3 is unsuitable for analyzing the load-carrying 
behavior of unstiffened elements in bending at elevated temperatures. The relative 
resistance of slender unstiffened elements in bending at elevated temperatures remains 
constant for large strains (important for cross-sections composed of different stiffened 
and unstiffened elements) and the load-end shortening behavior according to yield line 
theory converges to the actual behavior. 
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Fig. 8. Load-end shortening behavior of unstiffened  

elements in bending (ψε = 0.0). 

CONCLUSIONS 

The load-carrying behavior of unstiffened elements at elevated temperatures under fire 
conditions has been analyzed using temperature-dependent second order elastic theory 
considering initial imperfections and yield line theory. Second order elastic theory was 
used for the pre-buckling range, while a local plastic mechanism with yield lines was 
used to analyze the decrease of the resistance as a function of the local buckling 
deflection in the post-buckling range. The relative resistance may be approximated as the 
point of intersection between both theories. This approximation accords well with results 
obtained for unstiffened compression elements from numerical calculations using the 
finite element approach considering temperature-dependent elastic non-linear plastic 
material behavior. The relative resistance of unstiffened elements in compression at 
elevated temperatures is almost reached at the temperature-dependent proportional strain, 
while the relative resistance of unstiffened elements in bending remains constant at large 
strains. Thus, the absolute resistance of unstiffened compression elements at low 
temperatures is reached approximately at the proportional limit, while the absolute 
resistance for unstiffened elements in compression with low slenderness ratios and high 
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temperatures and of elements in bending increases for strains higher than the proportional 
strain. This ductile behavior and the non-linear material behavior of steel at elevated 
temperatures improve the resistance under fire conditions. 

The method presented in this paper constitutes the basis for the analysis of steel elements 
subjected to local buckling and fire. The aim is to develop this method for stiffened 
elements and also to develop a method for cross-sections composed of stiffened and 
unstiffened elements and for non-linear temperature distributions so as to take into 
account both thermal strains and local and global buckling. 
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