Measurement and Computation of Fire Phenomena (MaCFP)

Review of Current Standards for CFD Verification and Validation

First MaCFP Workshop, Lund University – June 10-11, 2017

Randall McDermott (NIST, USA) Arnaud Trouvé (University of Maryland, USA)

National Institute of Standards and Technology U.S. Department of Commerce

CFD-based Fire Modeling

Outline

- Computational grid design
- Subgrid-scale (SGS) modeling
 - Baseline SGS models used in FDS and FireFOAM
- Code Verification
- Model Validation

Turbulent flow

Turbulent flow

Example: pool fire,
$$\dot{Q} = 1$$
 MW; $D = 1$ m
 $\overline{u}_{CL, \max} \approx 1.9 \times (\dot{Q}/1000)^{1/5} = 7.6 \text{ m/s}$
 $u' \approx 0.3 \times \overline{u}_{CL, \max} = 2.3 \text{ m/s}$
 $L_t \approx 0.5 \times D = 0.5 \text{ m}$
 \downarrow

$$\Rightarrow \eta_{K} = \frac{L_{t}}{(\text{Re}_{t})^{3/4}} = \frac{0.5}{(11500)^{3/4}} = 0.4 \text{ mm}$$
 (Kolmogorov scaling)

Turbulent flame

Thermal radiation

Experimental observations

$$\delta_{soot} \sim 1 \text{ mm}$$

Valencia *et al.*, *Proc. Combust. Inst.* **36** (2017) 3219-3226

Computational grid requirement

Direct Numerical Simulation (DNS)

> Grid-resolved scales: L_t , η_K , δ_{flame} , δ_{soot}

 $\Delta x_{DNS} \approx \eta_{K}$ $\Delta x_{DNS} \approx (\delta_{flame}/10) = \Delta x_{DNS} \approx (\delta_{soot}/10)$

$$\Rightarrow \Delta x_{DNS} = O(0.1 \text{ mm})$$

Large Eddy Simulation (LES)

 \succ Grid-resolved scales: L_t

 $\Delta x_{LES} \approx (L_t/10)$

 \succ Unresolved scales: η_K , δ_{flame} , δ_{soot}

Computational grid requirement

Large Eddy Simulation (LES) Δx_{LES} ≈ (L_t/10)
 ➤ Traditional view point: L_t ≈ 0.5×D

Example: pool fire, $\dot{Q} = 22.6$ kW, D = 0.3 m

$$Q^* = \frac{\dot{Q}}{(\rho_{\infty}c_{p,\infty}T_{\infty})\sqrt{gD}D^2} \approx 0.4$$
$$L_f = 3.7 \times Q^{*2/5} \times D - 1.02 \times D \approx 0.5 \text{ m}$$
$$\Rightarrow \Delta x_{LES} \approx (D/20) \approx 1.5 \text{ cm}$$

Computational grid requirement

Large Eddy Simulation (LES) Δx_{LES} ≈ (L_t/10)
 Alternative view point: L_t ≈ 0.5×D

Example: pool fire, $\dot{Q} = 22.6 \text{ kW}$, D = 0.3 m

$$L_f = 3.7 \times D^* - 1.02 \times D$$

$$D^* = \left(\frac{\dot{Q}}{(\rho_{\infty}c_{p,\infty}T_{\infty})\sqrt{g}}\right)^{2/5} \approx 0.2 \text{ m}$$

 $\Rightarrow \Delta x_{LES} \approx (D^*/10) \approx 2 \text{ cm}$

Computational grid requirement

• Large Eddy Simulation (LES) $\Delta x_{LES} \approx (L_t/10)$

> In addition, flame base features a thin boundary layer: $\delta_{BL} \approx 1$ cm

$$\Rightarrow \Delta x_{LES} \approx (\delta_{BL}/10) \approx 1 \text{ mm}$$

Review of MaCFP target experiments

- Pool-like configurations with strong Rayleigh-Taylor instabilities (puffing motion, bubble and spike structures – thermals)
 - Category 1: Sandia Helium Plume
 - Category 2: Flames Sandia Methane and Hydrogen Flames
 - Category 3: Waterloo Methanol Pool Flame

• Grid resolution required to resolve largescale flow features

$$\Delta x_{LES} = O(1 \text{ cm})$$

• Grid resolution required to resolve boundary layer at flame base and vertical thermals

$$\Delta x_{LES} = O(1 \text{ mm})$$

Slide 11

Review of MaCFP target experiments

Boundary layer flame configurations

Category 4: FM Global Vertical Wall Flames

 $\delta_{BL} = O(1 \text{ cm})$

• Grid resolution required to resolve boundary layer and wall gradients

 $\Delta x_{LES} = O(1 \text{ mm})$

Review of MaCFP target experiments

Configurations with no obvious small-scale feature

Category 2: NIST McCaffrey Natural Gas Flames

 $\Delta x_{LES} = (S/20) \approx O(1 \text{ cm})$

Category 5: UMD Methane and Propane Line Flames

 $\Delta x_{LES} = (W/20) \approx O(1 \text{ mm})$

Front view

Side view

Turbulence

• Classical LES treatment: gradient transport model for turbulent fluxes featuring a turbulent viscosity μ_t

$$T_{ij} = -\mu_t \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} - \frac{2}{3}\delta_{ij}\frac{\partial \tilde{u}_k}{\partial x_k}\right) + \frac{2}{3}\delta_{ij}\overline{\rho}k_{SGS}$$

• Closure expression for μ_t

$$\mu_t = \overline{\rho}(C_{\mu_t}\Delta)\sqrt{k_{SGS}}$$
 where $\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}$

• Closure expression for k_{SGS}

Models: modified Deardorff (FDS); (constant-coefficient or dynamic) k-equation (FireFOAM)

Combustion

- Global combustion equation (no chemistry) $C_n H_m O_p + \{n + (m/4) - (p/2)\}O_2 \rightarrow nCO_2 + (m/2)H_2O$
- Closure expression for reaction rate: Eddy Dissipation Model (EDM) (FDS, FireFOAM)

$$\overline{\dot{\omega}_{F}^{\prime\prime\prime\prime}} = \overline{\rho} \times \frac{\min(\tilde{Y}_{F}; \tilde{Y}_{O_{2}} / r_{s})}{\tau_{t}} \quad \text{where} \quad \tau_{t} = C_{\tau_{t}} \times (\frac{\overline{\rho}\Delta^{2}}{\mu_{t}})$$

Plus correction to treat laminar combustion (correction applies in regions where the flow is laminar)

Radiation

• Radiative transfer equation (RTE) (assumed grey medium)

$$\nabla \bar{I}.\vec{s} = \overline{\kappa(\frac{\sigma T^4}{\pi})} - \bar{\kappa}\bar{I}$$
Emission Absorption

 Closure model for RTE: the prescribed global radiant fraction approach (FDS, FireFOAM)

$$\nabla \bar{I}.\vec{s} = \underbrace{C}_{\pi} \bar{\kappa}(\frac{\sigma \tilde{T}^{4}}{\pi}) - \bar{\kappa}\bar{I}, \text{ if } \dot{q}_{comb}^{\prime\prime\prime} > 0$$

$$\nabla \bar{I}.\vec{s} = \bar{\kappa}(\frac{\sigma \tilde{T}^{4}}{\pi}) - \bar{\kappa}\bar{I}, \text{ if } \dot{q}_{comb}^{\prime\prime\prime} = 0$$

$$\nabla \bar{I}.\vec{s} = 0, \text{ if } \dot{q}_{comb}^{\prime\prime\prime\prime} = 0$$

Challenges

• Turbulence

- Deardorff, k-equation models formulated for high-Reynolds number, momentum-driven flow but fires often feature moderate-Reynolds number, buoyancy-driven flow
- Combustion
 - EDM model does not describe ignition/extinction; modifications of EDM have been proposed to treat flame extinction for simulations of under-ventilated fires or suppressed fires
- Radiation
 - The prescribed global radiant fraction approach remains approximate but more fundamental approaches require a treatment of spectral effects and a soot model

Challenges

Radiation

RTE solved with Discrete Ordinate Method (DOM); accuracy of DOM is controlled by discretization of angular space and typically decreases in the far-field (ray effect)

CFD-based Fire Modeling

Outline

- Computational grid design
- Subgrid-scale (SGS) modeling
- Code Verification
 - Manufactured solutions
 - Continuous integration
- Model Validation
 - ➤ Calibration vs. Validation
 - Validation Metrics
 - Uncertainty Quantification
 - Quality Assurance

Adapted from W.L. Oberkampf and C.J. Roy. Verification and Validation in Scientific Computing. Cambridge, 2010.

Application Space: Statistically stationary flows; Forecasting

Manufactured Solutions

$$\begin{aligned} Z(x,y,t) &= \frac{1 + \sin(\pi k\hat{x})\sin(\pi k\hat{y})\cos(\pi \omega t)}{(1 + \frac{\rho_0}{\rho_1}) + (1 - \frac{\rho_0}{\rho_1})\sin(\pi k\hat{x})\sin(\pi k\hat{y})\cos(\pi \omega t)} \\ \rho(x,y,t) &= \left(\frac{Z(x,y,t)}{\rho_1} + \frac{1 - Z(x,y,t)}{\rho_0}\right)^{-1} \\ u(x,y,t) &= u_f + \frac{\rho_1 - \rho_0}{\rho(x,y,t)} \left(\frac{-\omega}{4k}\right)\cos(\pi k\hat{x})\sin(\pi k\hat{y})\sin(\pi \omega t) \\ v(x,y,t) &= v_f + \frac{\rho_1 - \rho_0}{\rho(x,y,t)} \left(\frac{-\omega}{4k}\right)\sin(\pi k\hat{x})\cos(\pi k\hat{y})\sin(\pi \omega t) \\ H(x,y,t) &= \frac{1}{2}(u(x,y,t) - u_f)(v(x,y,t) - v_f) \end{aligned}$$

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= \dot{Q}_{\rho} \\ \frac{\partial (\rho Z)}{\partial t} + \nabla \cdot (\rho Z \mathbf{u}) - \nabla \cdot (\rho D \nabla Z) &= \dot{Q}_{Z} \\ \frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \times (\nabla \times \mathbf{u}) + \nabla H - \tilde{p} \nabla (1/\rho) - \frac{1}{\rho} \nabla \cdot \mathbf{T} &= \dot{Q}_{\mathbf{u}} \end{aligned}$$

L. Shunn, F. Ham, P. Moin. Verification of variable-density flow solvers using manufactured solutions. Journal of Computational Physics, 231:3801-3827, 2012.

5.0 4.0 3.0 2.0 1.0 FDS6.5.3-1463-g8729db5-dirty \rightarrow FDS ρ -FDS Z 10^{-2} -FDS u FDS H L_2 Error $O(\Delta x)$ $O(\Delta x^2)$ 10⁻⁴ 10^{-6} 10⁻³ 10⁻² 10^{-1} Δx (m)

t = 0.375 s

ho, kg/m³

Slide 20

Continuous Integration

- 1. Version control
- 2. Unit tests
- 3. Software quality assurance (SQA)

GitHub

Model Validation

- W.L. Oberkampf, M.F. Barone (2006) Measures of agreement between computation and experiment: validation metrics. *J Comput Phys*, 217:5-36.
- K. McGrattan, B. Toman (2011) Quantifying the predictive uncertainty of complex numerical models. *Metrologia*, 48:173-180.
- R. McDermott, G. Rein. (2016) Special Issue on Fire Model Validation. *Fire Technology*, 52:1-4.

P. Ayala	K. Hartl	J. Li	F. Pimont	CH. Tang
G. Baker	Y. Hasemi	D. Lignell	G. Rein	G. Vigne
M. Bruns	R. Hintze	C.Y. Lin	P. Reneke	P. Wang
A. Cantizano	C. Hoffman	R. Linn	E. Ronchi	C. Weinschenk
J. Cranfield	G. Hsiano	N. Liu	S. Scott	C. Werner
A. Dodd	TC. Huang	K. McGrattan	C. Sieg	C. Zhang
K. Erickson	Z. Jozefik	W. Mell	J. Silva	J. Ziegler
O. Ezekoye	D. Kamikawa	E. Monson	A. Smits	
M. Finney	A. Kerstein	D. Nilsson	M. Spearpoint	
J. Floyd	E. Kuligowski	K. Overholt	S. Stoliarov	
C. Gutierrez-Montes	M. Larsen	R. Peacock	J. Suo-Anttila	

Contributors:

Calibration vs. Validation

Slide 23

Slide 24

Uncertainty Quantification

Output	Measurement	Propagated Input	Combined
Quantity	Uncertainty	Uncertainty	Uncertainty, $\tilde{\sigma}_E$
Gas and Solid Temperatures	0.05	0.05	0.07
HGL Depth	0.05	0.00	0.05
Gas Concentrations	0.02	0.08	0.08
Smoke Concentration	0.14	0.13	0.19
Pressure, Closed Compartment	0.01	0.21	0.21
Pressure, Open Compartment	0.01	0.15	0.15
Velocity	0.07	0.03	0.08
Heat Flux	0.05	0.10	0.11
No. Activated Sprinklers	0.00	0.15	0.15
Sprinkler Activation Time	0.00	0.06	0.06
Cable Failure Time	0.00	0.12	0.12
Smoke Alarm Activation Time	0.00	0.34	0.34

- Helpful in capturing general trends and steering development
- Choice of metric can cloud conclusions
- Care should be taken to understand conditional uncertainties

Measured Temperature Rise (°C)

Quality Assurance

Slide 26

Quality Assurance

S.B. Pope. Ten questions on the large-eddy simulation of turbulent flows. New Journal of Physics, 6:35, 2004.

Application Space

"Application space is *N*-dimensional and infinite in volume."

Experimental data

Theoretical applicability

Class of problem

Slide 28

A goal: Quantify model uncertainty outside of regions where data already exists, and reduce that uncertainty to required levels.

Questions?