

Turbulent Buoyant Plumes Comparison of Sandia Helium Plume Experiment

Michael Gollner University of Maryland

NIST

FM Global

MaCFP Working Group

June 10, 2017

Lund, Sweden

Sandia National Laboratory

A. JAMES CLARK SCHOOL of ENGINEERING • UNIVERSITY of MARYLAND

Experiments

- Experimental database from Sandia National Laboratories (SNL) Fire Laboratory for the Accreditation of Models by Experimentation (FLAME)
- 1-m in diameter non-reacting helium-air and reacting methane-air, hydrogen-air, JP-8 flames
- Detailed measurements of velocity and species using Planar Laser Induced Florence (PLIF) and Particle Image Velocimetry(PIV)
- Well documented experimental uncertainties

FLAME Facility

Figure 5. Photograph of the Fire Laboratory for Accreditation of Models and Experiments (FLAME).

Experimental Setup

- T.K. Blanchat. Characterization of the air source and plume source at FLAME. Technical Report SAND01-2227, Sandia National Laboratory, Albuquerque, New Mexico, 2001.
- P. E. DesJardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids, 16(6):1866–1883, 2004.
- T.J. O'Hern, E.J. Weckman, A.L. Gerhart, S.R. Tieszen, and R.W. Schefer. Experimental study of a turbulent buoyant helium plume. J. Fluid Mech., 544:143-171, 2005.

- Sheldon Tieszen (Sandia)
 - Project oversight, FLAME modifications, gas flow systems, data analysis
- E.J. (Beth) Weckman (and students) (Waterloo)
 - PLIF analysis, experimental setup
- Tim O'Hern (Sandia)
 - Laser Diagnostics, FLAME modifications, Data analysis
- Bob Schefer (Sandia)
 - Laser diagnostics, PLIF analysis consulting
- Andy Gerhart (NM)
 - PIV analysis

Experimental Runs

Run no.	Helium inlet velocity	Test type	Re	Ri	Meas. puffing freq.	Puffing freq. (a)
	(m/s) ± 1.3%		± 0.6%	± 6.5%	(Hz)	(Hz)
20	0.314	PIV	3344	80.57	1.20	1.33
22	0.319	PIV	3300	78.06	1.41	1.34
23	0.303	PIV	3198	86.72	1.36	1.32
25	0.340	PIV/PLIF	3306	68.75	1.53	1.36
26	0.315	PIV	3253	80.20	1.39	1.33
27	0.305	PIV	3242	85.32	1.37	1.32
29	0.352	PIV/PLIF	3256	64.32	1.42	1.37
30	0.337	PIV	3176	70.20	1.19	1.36
32	0.349	PIV/PLIF	3275	65.32	1.42	1.37
36	0.316	PIV/PLIF	2933	79.74	1.41	1.33
10 test ave	0.325		3228	75.74	1.37	1.34
4 Favre ave	0.339		3194	69.53	1.45	1.36

(a) given by f = V0 (0.8 Ri^(0.38))/D [Cetegen & Kasper, 1996]

Example Measurements

FIGURE 2. Sample raw PIV image in 1 m diameter helium plume (from Test 25).

FIGURE 3. Sample raw PLIF image in 1 m diameter helium plume, acquired simultaneously with the PIV image in figure 2.

Favre Averaged Measurements

Behavior of the Plume

• P. E. DesJardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids, 16(6):1866–1883, 2004.

Behavior of the Plume

• P. E. DesJardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids, 16(6):1866–1883, 2004.

Puff Cycle Sequence

Heinz Pitsch, Guillaume Blanquart, SnezhanaAbarzhi, Frank Ham, Sheldon Tieszen, Tim O'Hern, LES Simulation of Buoyant Plumes, CTR Summer School Program Results

SIMULATIONS

A. JAMES CLARK SCHOOL of ENGINEERING • UNIVERSITY of MARYLAND

Simulation Parameters

Institute	UGent ¹	IRSN	NIST	Sandia ²
Code	FireFOAM 2.2.x	ISIS 4.8.0	FDS 6.5.3	Fuego
Turbulence model	constant Smagorinsky (cs=0.1, Prt=0.7)	dynamic Smagorinsky (Cs=0.12; Sc_t = 0.5)	Deardorff (C_DEARDORFF=0.1), SC_T=0.5, PR_T=0.5	Dynamic Smagorinsky (cs=0.1, Prt=0.7)
Domain	4 x 4 x 4 m (cylindrical)	3 x 3 x 4 m	3x3x4 m	4 x 4 x 4 m
Time	30 s (avg. 10 s)	10 s (avg. 3 s)	20 s (avg. 10 s)	20 S (avg. 10 s)
Mesh (minimum cell size)	1.23 / 5.39 cm	2.5 cm	1.5 cm	5 cm, 3 cm

¹G. Maragkos, P. Rauwoens, Y. Wang, B. Merci, Large Eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume, Flow Turbul. Combust. 90:511-543 (2013)

²*P. E. DesJardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids, 16(6):1866–1883, 2004.*

Simulation Results (Sandia)

Instantaneous Snapshots of Vorticity Isocontour at 5% of Maximum

Peak production occurs at base of plume at small scales of motion

P. E. DesJardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids, 16(6):1866–1883, 2004.

Previous Study Results (Sandia/Stanford)

- 250K simulation did not show bubble and spike structure and thus underpredicts centerline density and overpredicts centerline velocity by a factor of 2
- 4M node mesh results is much closer to the data

Heinz Pitsch, Guillaume Blanquart, SnezhanaAbarzhi, Frank Ham, Sheldon Tieszen, Tim O'Hern, LES Simulation of Buoyant Plumes, CTR Summer School Program Results

- Buoyancy does not generate turbulence. It generates vorticity that leads to advection. Advection generates turbulence.
- Coherent structure growth from two instabilities are primarily responsible for mixing in both plumes and fires
 - Plumes: instability occurs at plume/air interface
 - Fires: instability occurs at the flame-product/air interface when the fuel is heavier than air

Heinz Pitsch, Guillaume Blanquart, SnezhanaAbarzhi, Frank Ham, Sheldon Tieszen, Tim O'Hern, LES Simulation of Buoyant Plumes, CTR Summer School Program Results

Mean He Mass Fraction

RMS He Mass Fraction

Radial Velocity

RMS Radial Velocity

Vertical Velocity

RMS Vertical Velocity

Puffing – Sandia Grid Resolution Results

DISCUSSION

A. JAMES CLARK SCHOOL of ENGINEERING • UNIVERSITY of MARYLAND