Measurement and Computation of Fire Phenomena (MaCFP)

Case 3: Turbulent pool fires with liquid fuel – Waterloo Methanol Pool Flame

First MaCFP Workshop, Lund University – June 10-11, 2017

Beth Weckman (University of Waterloo, Canada) Arnaud Trouvé (University of Maryland, USA)

Methanol Pool Flame Experiment

Modified overflow pan burner, 30.5 cm diameter Fixed level (1 cm rim height), gravity fed methanol pool fire Slide 2

Methanol Pool Flame Burner

- traversing stand allows radial and axial traverses of the fire flra
- burner moved while the velocity and temperature transducers held at a fixed point
- free ambient air entrainment into the fire from the base and sides
- natural draft fume hood
- fire sheilded from draughts by wire mesh covered with aluminum window screen.
- instrumentation operated from outside the enclosure

Methanol Pool Flame Experiment

Fine wire thermocouples, LDV point measurements 2-cm intervals, centerline to 16 cm radially Heights from 2 to 20 cm and 30 cm above the fuel

Liquid fuel (methanol); steady state conditions

- Evaporation rate assumed constant and estimated from experimental measurements
- Constant liquid level in fuel pan (rim height = 1 cm)
- Small flame (D = 30.5 cm; HRR = 22.6 kW; $L_f \sim 0.5 \text{ m}$)
- Laminar-to-turbulent transition at $z \sim 0.1-0.2$ m
- Methanol: non-sooting fuel ($\chi_{rad} \sim 17-18\%$)
- Flame (puffing) instability: periodic shedding of large-scale structure (f = 2.8 Hz)

Methanol Pool Flame Pulsation

Pulsation cycle of fire Frequency: 2.8 Hz

Methanol Pool Flame Pulsation

Pulsation cycle of fire Frequency: 2.8 Hz **Methanol Flame Photography**

Direct photography of luminous flame envelope

- macroscopic features of the fire flow field
 - vapor core
 - continuous flame zone
 - highly fluctuating regions of the fire
 - large scale structures characteristic of free burning fires are formed here
- visible fire pulsations
- track oscillatory behaviour

Methanol Pool Flame Structure

Methanol Pool Flame Schlieren

Methanol Pool Flame Schlieren

Simultaneous Velocity-Temperature

Radial and axial velocity

- Two component LDV
- Forward scatter configuration

Temperature

- Fine wire thermocouples
- 50 micron diameter, bare-wire Pt-Pt-10%Rh
- bead diameters in the range of 75-100 microns
- four channels of velocity and temperature data
- full time-series of discrete, instantaneous data
- 40,000 independent measurements at fixed sampling rate of 125 Hz

Simultaneous Velocity-Temperature

- time series ensemble-averaged
 - mean and rms values
 - correlation coefficients
 - turbulence time and length scales
 - autospectra of velocity and temperature
- estimation of turbulent parameters
 - turbulent kinetic energy and production
 - isotropic dissipation rate/mass,
 - turbulent Reynolds and Prandtl numbers
 - include contributions from large-scale vortical structures and smaller scales more classical turbulence

Measurements

- Data:
 - Mean and rms values: u-bar, u-rms (vertical direction); v-bar, v-rms (radial direction); T-bar, T-rms
 - Turbulent fluxes: uv (rz-Reynolds shear stress), uT (turbulent heat flux in vertical direction), vT (turbulent heat flux in radial direction)
 - **>** Integral time scales: $T_{t,u}$, $T_{t,v}$, $T_{t,T}$

$$R_{uu}(\tau) = \frac{\overline{u'(t) u'(t+\tau)}}{\overline{u'(t) u'(t)}}$$
$$T_{t,u} = \int_0^\infty R_{uu}(\tau) d\tau$$

(one-point auto-correlation function)

Simultaneous Velocity-Temperature

Uncertainty Analysis

- mean and rms velocity: ± 5% at 95% confidence
- mean temperature: ± 5% at 95% confidence
- Reynolds stress : ± 15% at 95% confidence
- rms temperature and velocity-temperature correlations – unknown
 - depend on standard instrument error
 - unquantifiable error due to compensation for thermal inertia of the thermocouple no in situ compensation
 - temperature data digitally compensated
 - no correction for catalytic or radiation effects less than 5%

Case 3: Waterloo Methanol Pool Flame

Computational results

- G. Maragkos *et al.* (UGent)
- A. Marchand *et al.* (UMD)
- T. Sikanen *et al.* (VTT)

G. Maragkos *et al.* (UGent)

- FireFOAM, Version 2.2.x
- Discretization
 - Computation domain: 1.5 m × 1.8 m (cylindrical)
 - > Domain discretization: 0.985 million cells; resolution: 0.5 cm in flame region
 - > Angular space discretization: 72 solid angles

G. Maragkos *et al.* (UGent)

- Boundary conditions
 - > Fuel inlet: prescribed mass flow rate; fixed temperature (T_{BP} = 338 K)
 - > Open flow boundary conditions at south, side and north air boundaries

G. Maragkos *et al.* (UGent)

• SGS models

>Turbulence: dynamic Smagorinsky

Combustion: modified Eddy Dissipation Concept (EDC)

Radiation: full RTE with Weighted-Sum-of-Grey-Gases (WSGG) model

– Predicted global radiant fraction $\chi_{rad} \sim 16.4\%$

G. Maragkos *et al.* (UGent)

- Computational cost
 - Simulated time: 65 s
 - CPU cost: (103 hours) × (24 processors) = 2,472 CPU-hours
 (38 CPU-hours/simulated s)
- Maturity level
 - New iteration of recently completed project/published work (Maragkos et al., Combust. Flame 181 (2017) 22-38)

• A. Marchand *et al.* (UMD)

- FireFOAM, Version dev
- Discretization
 - Computation domain: 1.2 m × 1.8 m (cylindrical)
 - Domain discretization: 0.561 million cells; resolution: 1 cm × 0.25 cm in flame base region
 - Angular space discretization: 16 solid angles

A. Marchand *et al.* (UMD)

- Boundary conditions
 - > Fuel inlet: prescribed mass flow rate; fixed temperature ($T_{BP} = 338$ K)
 - Open flow boundary conditions at south, side and north air boundaries

A. Marchand *et al.* (UMD)

• SGS models

Turbulence: dynamic *k*-equation

Combustion: Eddy Dissipation Model (EDM)

Radiation: emission-only RTE with prescribed global radiant fraction ($\chi_{rad} = 18\%$)

A. Marchand *et al.* (UMD)

- Computational cost
 - ≻ Simulated time: 60 s
 - CPU cost: (90 hours) × (60 processors) = 5,400 CPU-hours (90 CPU-hours/simulated s)

• Maturity level

New project, work-in-progress

- T. Sikanen *et al.* (VTT)
 - FDS, Version 6.5.3
 - Discretization
 - Computation domain: 0.64 m × 0.64 m × 1.28 m (rectangular)
 - Domain discretization: 33.554 million cells; resolution: 0.25 cm (uniform)
 - Angular space discretization: 104 solid angles

T. Sikanen *et al.* **(VTT)**

- Boundary conditions
 - Fuel inlet: calculated mass flow rate (1D evaporation model); fixed temperature ($T_{BP} = 338$ K)
 - Predicted fuel evaporation rate under-estimated by a factor ~ 2
 - Open flow boundary conditions at south, side and north air boundaries

- **T. Sikanen** *et al.* (VTT)
 - SGS models
 - **> Turbulence**: Modified Deardorff
 - **Combustion**: Eddy Dissipation Model (EDM)
 - **> Radiation**: emission-only RTE with prescribed global radiant fraction ($\chi_{rad} = 17\%$)

- **T. Sikanen** *et al.* (VTT)
 - Computational cost
 - Simulated time: 15 s
 - CPU cost: (130 hours) × (32 processors) = 4,160 CPU-hours (416 CPU-hours/simulated s)
 - Maturity level
 - > New project, work-in-progress

Heat release rate

21.8 kW (UGent), 22.6 kW (UMD), ~ 13 kW (VTT)

Flame dynamics

- Puffing frequency:
 - ▶ 2.8 Hz (UGent)
 - ▶ 2.2 Hz (UMD)
 - ➤ ~ 3 Hz (VTT)
- Movies (UMD) (VTT)

Centerline variations

• Temperature

Centerline variations

• Vertical velocity

Centerline variations

• Radial velocity

Centerline variations

• Turbulent heat flux in vertical direction

Conclusions

Computational results

• Accuracy of UGent solution is good (both qualitatively and quantitatively)

> *Question*: is this good performance due to computational resolution or to modified SGS models?

• Accuracy of UMD and VTT solutions is not as good (qualitatively OK but quantitatively inaccurate)

> Accuracy of UMD solution is limited by insufficient grid resolution

Accuracy of VTT solution is limited by small domain size (in horizontal direction) and by inaccurate predictions of HRR

Conclusions

Experimental data

- Database limited to near-field (*i.e.*, low elevations, 0 ≤ z ≤ D)
 Need a more complete description of the flame region (0 ≤ z ≤ L_f)
- Flame is only weakly turbulent
 - > Need larger flame sizes (*i.e.*, larger pool diameters)
- The puffing instability is not fully characterized
 - Need information on time-dependent flame shape and/or an estimate of the amplitude of the puffing oscillations (both in the horizontal and vertical directions)
- Thermal feedback is not characterized
 - Need measurements of the (convective/radiative) heat flux at the liquid fuel surface