Turbulent Wall Fire

Yi Wang, FM Global Jose Torero, University of Maryland

Measurement and Computation of Fire Phenomena – MaCFP Lund University, 06/10/2017

Contributors

- FM Global
 - Ning Ren

NIST

- Kevin McGrattan
- Randy McDermott

Wall Fire – A Canonical Problem

Wall Fire – A Canonical Problem

Wall Fire – A Canonical Problem

Scope: Wall Fire Heat Transfer

Scope: Wall Fire Heat Transfer

Outline

- Experiment
- Modeling results
 - Approach
 - Comparisons
- Discussions
 - Modeling practices
 - Future experiment

Experiments –

(J. de Ris et al., FM report, 1999) (J. de Ris et al., Proc. 7th IAFSS, 2002) (N. Ren et al., C&F 2015)

- Porous vertical burners
 - Propylene
 - Methane
 - Ethane
- Water cooled vertical wall

Experiments –

(J. de Ris et al., FM report, 1999) (J. de Ris et al., Proc. 7th IAFSS, 2002) (N. Ren et al., C&F 2015)

- Measurement
 - Temperature
 - Radiance
 - Total Heat flux
 - Soot depth
 - Velocity

Soot Depth

Measured soot depth vs. fuel mass transfer at different heights (mm)

Temperature

Radiance

De Ris, et. al, 2003, Fire Safety Science

Outward radiance normal to the burner surface Markstein & de Ris (1992)

1

2

3

5

6

7

8

9

2.0

Heat Fluxes

de Ris et al. (Unpublished)

Experiments – Summary

- Carefully designed and conducted data set
 - Reveal physics, build analytical models
- Limitations
 - First order turbulent statistics only
 - Operating conditions varies for different measurement
 - Not ideal for CFD model development and validation

Modeling Choices

- Mesh resolution
- Convection treatment: wall functions
- Radiation model
- Turbulence and combustion model

NIST – FDS 6.5.3

- Propylene
- 3 mm resolution, 4.2 million cells, 160 MPI processes
- Six band radiation model using RadCal
- Mixing-controlled fast chemistry, EDC model
- Soot yield: 0.095
- CO yield: 0.017 (Tewarson, SFPE Handbook)
- Open boundaries, front, bottom, top
- Burner surface and side walls, ambient temperature
- Nusselt number based convective heat transfer model

FM Global – FireFOAM 2.2.x

- Propylene
- 3 mm resolution, 0.8 M cells, 36 cores
- Modified EDC model
- Radiant fraction based radiation model
- Direct resolving convective heat flux

Mesh and B.C.

- Base line 3 mm grid
 - $-\Delta Y \sim 3 \text{ mm} \Delta X \sim 7.5 \text{ mm}, \Delta Z \sim 7.7 \text{ mm}$
 - 0.8 M cells, CFL = 0.5
 - 36 CPUs, 45 hrs for 30 s
- B.C.
 - Cyclic (periodic) in span-wise
 - Entrainment BC at the side
 - Fixed temperature, T = 75 °C
 - Fixed flow rates with turbulent fluctuations
 - 8.8, 12.7, 17.1, 22.4 g/m²s
- Schemes:
 - 2nd order fully implicit

Grid Convergence

Natural Convection, High Gr Number

Grid Requirement

 High Re, momentum driven flow (Piomelli et al., 2002)

$$\delta_{VSL} \approx \frac{V_w}{\left(\tau_w / \rho_w\right)^{1/2}} \approx 0.2mm$$

 High Grashof, natural convection (Holling et al., 2005)

$$\delta_{VSL} \approx \frac{(V_w / \Pr)^{3/4}}{(\dot{q}_{w,c}'' / \rho_w c_{p,w})^{1/4} (g\beta)^{1/4}} \approx 0.5mm$$

- Wall fire ?
 - 10-20 cells across the flame: 3mm to start

Grid Convergence - FireFOAM

Grid Convergence - FireFOAM

Grid Requirement

- Larger cell size than
 - Momentum driven shear flow
 - Buoyancy driven natural convection flow
- Because
 - Buoyancy and HRR take place in outer layer
 - Blowing effect

Model Comparison

Soot Depth

Radiation Model – FireFOAM

- Fixed radiant fraction
- Finite volume implementation of Discrete
 Ordinate Method (fvDOM)
- Optically thin assumption

Soot/gas blockage (χ_{rad} is reduced by 25%)

Fuel	Methane CH₄	Ethane C ₂ H ₆	Ethylene C ₂ H ₄	Propylene C ₃ H ₆	
Wall Fire (de Ris measurement)	15%	17%	24%	32%	
Simulation (account for blockage)	12%	13%	18%	25%	

Radiation Model – FDS

- Six band radiation model using RadCal
- Soot yield: 0.095

RadCal has radiative properties for methane, ethane, ethylene, and propylene (and a few other fuels). FDS has a 6 band option for radiative transport. This option is expensive, requiring about 56% of total CPU time. It is not normally used for routine fire protection calculations.

	Radiative Fraction				
Fuel	Tewarson (SFPE Handbook)	FDS Prediction			
Ethane	0.25	0.31			
Ethylene	0.34	0.38			
Methane	0.14	0.22			
Propylene	0.37	0.39			

ω (1/cm)	10000	3800 34	00 24	00 21	74 10	00 50
6 Band Model	1	2	3	4	5	6
Major Species	Soot CO ₂ , H ₂ O	$\begin{array}{c} \text{CO}_2\\ \text{H}_2\text{O}, \text{Soot} \end{array}$	CH ₄ Soot	CO ₂ Soot	H ₂ O,CH ₄ Soot	H ₂ O CO ₂
λ (µm)	1.00	2.63 2.	94 4.1	4.7	70 10	.0 200

Table 6.1: Limits of the spectral bands for methane (CH₄).

Table 6.2: Limits of the spectral bands for ethane (C₂H₆).

ω (1/cm)	10000	3800 33	350 255	50 165	50 109	90 50
6 Band Model	1	2	3	4	5	6
Major Species	Soot	CO ₂	C ₂ H ₆	CO ₂	C ₂ H ₆	H ₂ O
Major species	CO ₂ , H	$_2O$ H ₂ O, Soot	Soot	CO, H ₂ O, Soot	H ₂ O, Soot	CO_2, C_2H_6
λ (μ m)	1.00	2.63 2.	99 3.9	2 6.0	6 9.1	7 200

Table 6.3: Limits of the spectral bands for ethylene (C₂H₄).

	ω (1/cm)	1000	0 380	00 337	75 280	00 165	50 780) 50
	6 Band Model		1	2	3	4	5	6
	Major Spacias		Soot	CO ₂	C ₂ H ₄	CO ₂	C_2H_4	H ₂ O
Major 5	Major species	0	CO_2, H_2O	H ₂ O, Soot	Soot	CO, H ₂ O, Soot	H ₂ O, Soot	CO ₂
	λ (µm)	1.00	2.6	3 2.9	6 3.5	7 6.0	6 12.	82 200

Table 6.4: Limits of the spectral bands for propylene (C₃H₆).

	ω (1/cm)	100	000 380	00 325	50 260	00 195	50 117	75 50
	6 Band Model		1	2	3	4	5	6
	Major Species		Soot	CO ₂	C ₃ H ₆	CO ₂	C ₃ H ₆	C_3H_6 , H_2O
			CO_2, H_2O	H ₂ O, Soot	Soot	CO, Soot	H ₂ O, Soot	CO ₂
	λ (µm)	1.0	0 2.6	3 3.0	8 3.8	5 5.1	3 8.5	1 200

Convective and Radiative Heat Flux

Thermocouple (T.C.) Temperature

- Gas temperature measurement
 - Fluctuation
 - Radiation
- Numerical description of thermocouple temperature
 - Thermocouple Model

$$\rho_{Tc}C_{Tc}\frac{V_{Tc}}{A_{Tc}}\frac{dT_{Tc}}{dt} = \varepsilon_{Tc}\left(G - \sigma T_{Tc}^{4}\right) + h\left(T_{g} - T_{Tc}\right)$$

Additional Modeling Results

Blowing Effect

Convective Heat Flux

- Wall function implication
 - Blowing effect controls the heat flux in the pyrolysis region
 - Flaming non-pyrolysis region has constant convective heat flux
 - Plume region should have reduced heat flux depending on T, and wall function should account for grid size automatically
- Should compare convection and radiation separately with other models

Combustion Model

Eddy Dissipation Concept (EDC model)

- Mixing controlled reaction

 $R = \frac{\tau_d / C_d}{1 + C_d}$

 τ_t / C_{EDC}

E0.75

E0.5

E0.25

0

Turbulence Model

Smagorinsky model

$$\mu_{sgs} = \rho (C_s \Delta)^2 \left(2 \overline{S_{ij}} \overline{S_{ij}} \right)^{1/2}$$

$$\overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$

Two deficiencies:

- 1. Laminar region with pure shear
- Wrong scaling at near wall region O(1) instead of O(y³)

WALE* model

Wall adaptive local eddy-viscosity Zero for pure shear flow

$$\mu_{sgs} = \rho (C_{w} \Delta)^{2} \underbrace{\left(\underbrace{S_{ij}^{d} S_{ij}^{d}}_{ij} \right)^{5/2}}_{\left(\underbrace{\overline{S_{ij}} \overline{S_{ij}}}_{ij} \right)^{5/2} + \left(\underbrace{S_{ij}^{d} S_{ij}^{d}}_{ij} \right)^{5/4}}_{\bullet}$$

O(y³) near wall scaling

$$\begin{vmatrix} S_{ij}^{d} = \overline{S_{ik}} \overline{S_{kj}} + \overline{\Omega_{ik}} \overline{\Omega_{kj}} - \frac{1}{3} \delta_{ij} \left(\overline{S_{mn}} \overline{S_{mn}} - \overline{\Omega_{mn}} \overline{\Omega_{mn}} \right) \\ \overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right), \qquad \overline{\Omega_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} - \frac{\partial \overline{u_j}}{\partial x_i} \right)$$

* Nicoud, Ducros, Flow Turb. Combst. 1999

Summary

- Grid Requirement
 - O(2-3mm)
 - Capable to direct calculate convective heat flux
 - Blowing effect reduces resolution requirement
- Near-wall turbulence model and combustion model important for HRR and T distribution
 - Model can be grid dependent

Summary (cont'd)

- Wall heat flux prediction sensitive to model choices
 - Over prediction of heat flux for soot yield and wide band radiation model
 - Separating convection/radiative heat flux, also soot and gas radiation contributions should help understand model deficiency
- Wall function might be simplified recognizing constant convective heat flux in the flaming region

