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Outline

 Experiment
 Modeling results

– Approach
– Comparisons 

 Discussions
– Modeling practices
– Future experiment 
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Experiments –

 Porous vertical burners
– Propylene
– Methane
– Ethane

 Water cooled vertical wall

(J. de Ris et al., FM report, 1999)
(J. de Ris et al., Proc. 7th IAFSS, 2002) 
(N. Ren et al., C&F 2015)
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Experiments –

 Measurement 
– Temperature
– Radiance
– Total Heat flux
– Soot depth
– Velocity

(J. de Ris et al., FM report, 1999)
(J. de Ris et al., Proc. 7th IAFSS, 2002) 
(N. Ren et al., C&F 2015)
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Soot Depth

Measured soot depth vs. fuel mass transfer 
at different heights (mm)
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Radiance 

Outward radiance normal to the 
burner surface

Markstein & de Ris (1992)

De Ris, et. al, 2003, Fire Safety Science
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Heat Fluxes

Small wall-fire: z = 198 mm

de Ris et al. (Unpublished)

Large wall-fire: z = 990 mm
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Velocity

De Ris, et. al, 2003, Fire Safety Science
Most, et. al, 1984

Ethane



FM Global

Experiments – Summary

 Carefully designed and conducted data set
– Reveal physics, build analytical models

 Limitations 
– First order turbulent statistics only
– Operating conditions varies for different measurement
– Not ideal for CFD model development and validation
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Modeling
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Modeling Choices

 Mesh resolution
 Convection treatment: wall functions 
 Radiation model
 Turbulence and combustion model 
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NIST – FDS 6.5.3
 Propylene
 3 mm resolution, 4.2 million cells, 160 MPI processes
 Six band radiation model using RadCal
 Mixing-controlled fast chemistry, EDC model
 Soot yield: 0.095
 CO yield: 0.017 (Tewarson, SFPE Handbook)
 Open boundaries, front, bottom, top
 Burner surface and side walls, ambient temperature
 Nusselt number based convective heat transfer model
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FM Global – FireFOAM 2.2.x
 Propylene
 3 mm resolution, 0.8 M cells, 36 cores
 Modified EDC model 
 Radiant fraction based radiation model
 Direct resolving convective heat flux
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Mesh and B.C.
 Base line – 3 mm grid

– ∆Y ~ 3 mm ∆X ~ 7.5 mm, ∆Z ~ 7.7 mm
– 0.8 M cells, CFL = 0.5
– 36 CPUs, 45 hrs for 30 s

 B.C.
– Cyclic (periodic) in span-wise 
– Entrainment BC at the side
– Fixed temperature, T = 75 ˚C
– Fixed flow rates with turbulent fluctuations 

• 8.8, 12.7, 17.1, 22.4 g/m2s
 Schemes: 

– 2nd order fully implicit 
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Grid Convergence
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Law of the Wall: High Re

++ = yu

τu
uu =+

ν
τyuy =+

ρ
τ

τ
wu =

Cyu += ++ ln1
κ



FM Global

Natural Convection, High Gr Number

Holling & Herwig, JFM 2005
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Grid Requirement
 High Re, momentum driven flow 

(Piomelli et al., 2002)

 High Grashof, natural convection 
(Holling et al., 2005)

 Wall fire ?
– 10-20 cells across the flame: 3mm to 

start  
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Grid Convergence - FireFOAM
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Grid Requirement

 Larger cell size than
– Momentum driven shear flow
– Buoyancy driven natural convection flow

 Because
– Buoyancy and HRR take place in outer layer
– Blowing effect 
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Model Comparison
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Soot Depth
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Total Heat Flux
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Radiation Model – FireFOAM

 Fixed radiant fraction
 Finite volume implementation of Discrete 

Ordinate Method (fvDOM)
 Optically thin assumption
 Soot/gas blockage (χrad is reduced by 25%)

)
4

(
π

χ crad q
ds
dI ′′′

=


Fuel Methane
CH4

Ethane
C2H6

Ethylene
C2H4

Propylene
C3H6

Wall Fire
(de Ris measurement) 15% 17% 24% 32%

Simulation
(account for blockage) 12% 13% 18% 25%
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• Six band radiation model using RadCal
• Soot yield: 0.095

RadCal has radiative properties for 
methane, ethane, ethylene, and 
propylene (and a few other fuels). FDS 
has a 6 band option for radiative 
transport. This option is expensive, 
requiring about 56% of total CPU time. It 
is not normally used for routine fire 
protection calculations.

Fuel

Radiative Fraction

Tewarson
(SFPE 

Handbook)

FDS 
Prediction

Ethane 0.25 0.31

Ethylene 0.34 0.38

Methane 0.14 0.22

Propylene 0.37 0.39

Radiation Model – FDS
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Convective and Radiative Heat Flux

laminar turbulent laminar turbulent

Increase fuel 
flow rate

Increase fuel 
flow rate
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Radiance
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T Gas
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Thermocouple (T.C.) Temperature

 Gas temperature measurement
– Fluctuation
– Radiation

 Numerical description of 
thermocouple temperature
– Thermocouple Model

( ) ( )TcgTcTc
Tc

Tc

Tc
TcTc TThTG

dt
dT

A
VC −+−= 4σερ



FM Global

T TC
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Other Fuels 
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Additional Modeling Results
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T Similarity 
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T and U Fluctuation
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Blowing Effect
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Convective Heat Flux
 Wall function implication

– Blowing effect controls the heat flux in the pyrolysis 
region 

– Flaming non-pyrolysis region has constant convective 
heat flux

– Plume region should have reduced heat flux depending 
on T, and wall function should account for grid size 
automatically

 Should compare convection and radiation 
separately with other models 
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Combustion Model

 Eddy Dissipation Concept (EDC model)
– Mixing controlled reaction
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Turbulence Model

( ) ( ) 2/12 2 ijijssgs SSC Δ= ρμ
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Zero for pure shear flow

O(y3) near wall scaling

Two deficiencies:
1. Laminar region with pure shear
2. Wrong scaling at near wall 

region
O(1) instead of O(y3)

Smagorinsky model
WALE* model

Wall adaptive local eddy-viscosity

* Nicoud, Ducros, Flow Turb. Combst. 1999 
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Wall-Adaptive Local Eddy Viscosity

Slide 49

SM Model WALE Model

SM
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Summary

 Grid Requirement
– O(2-3mm) 
– Capable to direct calculate convective heat flux
– Blowing effect reduces resolution requirement 

 Near-wall turbulence model and combustion model 
important for HRR and T distribution
– Model can be grid dependent
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Summary (cont’d)

 Wall heat flux prediction sensitive to model choices
– Over prediction of heat flux for soot yield and wide band 

radiation model 
– Separating convection/radiative heat flux, also soot and 

gas radiation contributions should help understand 
model deficiency 

 Wall function might be simplified recognizing 
constant convective heat flux in the flaming region
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Discussions


