

Case 5: Flame Extinction

Dr. Randall J. McDermott (NIST) Prof. Andre W. Marshall (University of Maryland)

Acknowledgements

Dr. James P. White (FM Global)

Overview

Experimental Setup

- Turbulent Line Burner (TLB) Facility
 - > Flame
 - Suppression
 - Measurements

Simulation Results

- Contributing Teams
- Summary Modeling Information
- Comparisons (CH_4 and C_3H_8)
 - Temperature Profiles
 - \succ O₂ Profiles
 - Flame Height
- _{6/20/17} > Combustion Efficiency

Concluding Remarks

- Experimental Issues
 - Flame Anchor Effects
 - Ventilation
 - Entrainment
 - Exhaust Flow Distribution
 - Mist Details
- Experimental Advancements
 - New Configurations
 - New Measurements
- Simulation Issues
- Open Discussion

Overview

- Canonical lab-scale facility
- Well-characterized inlet and boundary conditions
- Integral and local diagnostics
 - Global HRR / combustion efficiency
 - Global radiative loss fraction
 - Mean flame height
 - Local temperature & O₂ profiles
- Suppression capabilities
 - Nitrogen dilution of oxidizer
 - Water-mist

Flame Details

Flame features

- Line-fire geometry
- Buoyancy driven
- Fully turbulent
- Gaseous fuels
 - Methane (CH4) 1.00 g/s, 5.4 cm/s
 - Propane (C3H8) 1.08 g/s, 2.1 cm/s
- ~50 kW total HRR

Suppression Details

- Co-flowing oxidizer
 - Steady, uniform flow (85 g/s, 25 cm/s)
 - Controlled suppressant delivery
- Nitrogen suppression
 - N₂ gas via pressurized Dewar
 - 0-40 g/s N₂ (X_{O2}: 0.21-0.11)
 - Oxygen anchor
 - > 0.08 g/s O₂ (~2% combustion)
 - Prevents liftoff extinction

Measurement Details

- Local point-measurement profiles
 - Cross-flame profiles, 12.5 cm and 25 cm elevation
 - Partially diluted oxidizer ($X_{O2} \sim 0.18$)
 - TC temperature
 - ➤K-Type thermocouples, ~1 mm bead diameter
 - ➤ Uncertainty ±2 K
 - O₂ concentration
 - > 1/8" OD copper tube sampling probe
 - > Servomex 540E paramagnetic O_2 analyzer
 - Uncertainty ±1250 ppm

Measurement Details

- Flame height
 - Video camera
 - 50% intermittent visible flame location
 - Uncertainty ±1.5 cm
- Combustion efficiency
 - OC and CDG calorimetry
 - Uncertainty ±1.5 kW

Contributing Teams

- FM Global (Ning Ren)
- University of Maryland (A. Marchand, S. Verma and A. Trouvé)
- NIST (Randall McDermott)

Summary Modeling Information

6/20/17

Critical Flame Temperature Model

J. Vaari et al. CFD Simulations on Extinction of Co-Flow Diffusion Flames. In 10th IAFSS, 2011.

Critical Damköhler Number Model

S. Vilfayeau et al. Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow. *Fire Safety Journal*, 2016.

- UMD model
 - Provide a framework that allows a separate treatment of extinction and reignition

$$Da = \frac{\tau_{mixing}}{\tau_{chemical}}$$

Reignition Model

S. Vilfayeau et al. Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow. *Fire Safety Journal*, 2016.

- UMD model
 - Provide a framework that allows a separate treatment of extinction and reignition

$$\overline{\dot{\omega}_{R_1}^{'''}} = (1 - FEF) \times \overline{\dot{\omega}_{EDC}^{'''}}$$
$$\overline{\dot{\omega}_{R_2}^{'''}} = FEF \times \overline{\dot{\omega}_{EDC}^{'''}}$$
$$\overline{\dot{\omega}_{R_3}^{'''}} = FIF \times (\overline{\dot{\omega}_{EDC}^{'''}})^*$$

R1:
$$C_n H_m O_p + \left(n + \frac{m}{4} - \frac{p}{2}\right) O_2 \rightarrow nCO_2 + \frac{m}{2} H_2O$$

R2: $C_n H_m O_p + \left(n + \frac{m}{4} - \frac{p}{2}\right) O_2 \rightarrow C_n H_m O_p^* + \left(n + \frac{m}{4} - \frac{p}{2}\right) O_2$
R3: $C_n H_m O_p^* + \left(n + \frac{m}{4} - \frac{p}{2}\right) O_2 \rightarrow nCO_2 + \frac{m}{2} H_2O$

FEF Flame extinction factor FIF Flame re-ignition factor

$$FIF = H(\tilde{T} - T_{ign})$$
 and $T_{ign} = 1100$ K

Reactive Volume Fraction Model

S. Dorofeev. Thermal quenching of mixed eddies in non-premixed flames. In Proceedings of the Combustion Institute, 2016.

Computational Domain FireFOAM (FM Global)

- CH4 and C3H8
- 1.6 x 1.4 x 2.0 m
- 5 mm grid in the flame region
- 2 cm grid in the far-field

Computational Domain FDS (NIST)

6/20/17

Simulation Videos

Simulation Results

Comparisons

- Temperature Profiles
- O₂ Profiles
- Flame Height
- Combustion Efficiency
- Radiative Heat Flux

O₂ Profile Comparisons

6/20/17

Flame Height Comparisons

Slide 21

Combustion Efficiency Comparisons

Radiative Heat Flux Comparisons

Concluding Remarks

Experimental Issues

- Flame Anchor Effects
- Ventilation
 - > Entrainment
 - Exhaust Flow Distribution
- Mist Details

Concluding Remarks

- Simulation Issues
 - Prediction of radiative fraction
 - Robust extinction model parameters
 - Broaden range of experimental targets:
 - Fuels
 - Diluents
 - Strain rates

Open Discussion

[MaCFP, 2017]

6/20/17