

Heat and mass transfer in the condensed phase

MaCFP workshop 11. June 2017, Lund Simo Hostikka

Outline

- **1.** Governing equations
- 2. FDS Pyrolysis model
- 3. Special topics and challenges
- 4. Possible MaCFP topics

Classical research scenario

Scales of pyrolysis modelling

GOVERNING EQUATIONS

Condensed phase species conservation

$$\frac{\partial \rho_{s,\alpha}}{\partial t} + \nabla \cdot \left(\mathbf{u} \rho_{s,\alpha} \right) = S_{s,\alpha}$$

- Condensed phase = solid which does not move \Rightarrow **u** = 0

$$\frac{\partial \rho_{s,\alpha}}{\partial t} = S_{s,\alpha}$$

- Conservation of total mass as a sum of components.

Gas species conservation

$$\frac{\partial \phi \rho_{g,i}}{\partial t} + \nabla \cdot \left(\mathbf{u} \rho_{g,i} \right) + \nabla J_i = S_{g,i}$$

- Porosity ϕ prescribed or solved
- Fickian diffusion $\Rightarrow \nabla J_i = -\nabla \phi D_i \nabla \rho_{g,i}$
- No accumulation of gaseous components \Rightarrow

$$\nabla \cdot \left(\mathbf{u} \rho_{g,i} \right) = S_{g,i}$$

Condensed phase energy conservation

- Neglecting the kinetic and potential energy and the external work

$$\frac{\partial}{\partial t}(\rho_s h) + \nabla \cdot \mathbf{q}_c + \nabla \cdot \mathbf{q}_{rad} = \dot{Q}_{s-g}''' + \dot{Q}_{chem}'''$$

- Solve radiation from separate equation \Rightarrow consider as a source/sink.
- Combine with mass conservation \Rightarrow

$$\rho_{s}c_{s}\frac{\partial T}{\partial t} = \nabla(k\nabla T) + \dot{Q}_{s-g}''' + \dot{Q}_{chem}'' + \dot{Q}_{rad}'''$$

Gas phase energy and momentum

Gas phase energy conservation

- Assuming unity Lewis number and transparent gas

$$\frac{\partial}{\partial t} \left(\rho_g \phi h_g \right) + \nabla \cdot \mathbf{u} h_g = \nabla \cdot \left(\rho_g \phi D \nabla h_g \right) - \dot{Q}_{s-g}''' + \dot{Q}_{chem}'''$$

Gas phase momentum conservation

- Needed for finite mass fluxes and pressure calculation
- Darcy's law, no gravity

$$\mathbf{u} = -\frac{B}{\mu} \nabla P$$

- Pressure evolution by combining this with continuity and ideal gas law

Chemical reaction source term

 Source term consists of the heat of pyrolysis (reaction) at reference temperature and the difference between the heat capacities between original material and the products

$$\dot{Q}_{chem}^{\prime\prime\prime} = \sum_{\alpha=1}^{N_{species}} \sum_{\beta=1}^{N_{reac}} \dot{m}_{\alpha,\beta}^{\prime\prime\prime} \left[\Delta H_r + \int_{T_{ref}}^{T} c_{\alpha} dT - \sum_{i=1}^{N_{prod}(\beta)} v_{\beta,i} \int_{T_{ref}}^{T} c_{g,i} dT \right]$$

- If we assume that the reaction takes place at the temperature where heat of reaction was determined, this simplifies to

$$\dot{Q}_{chem}^{\prime\prime\prime} = \sum_{\alpha=1}^{N_{species}} \sum_{\beta=1}^{N_{reac}} \dot{m}_{\alpha,\beta}^{\prime\prime\prime} \Delta H_r$$

FDS PYROLYSIS MODEL

Approximations made in FDS

- 1. 1D
- 2. No mass accumulation
- 3. Instantaneous mass transfer
- 4. Thermal equilibrium between gases and solids
- 5. Chemical source term as a heat of reaction

Pyrolysis model equations for FDS

$$\rho_{s}c_{s}\frac{\partial T_{s}}{\partial t} = \frac{\partial}{\partial x}\left(k_{s}\frac{\partial T_{s}}{\partial x}\right) + \dot{q}_{s}^{\prime\prime\prime\prime}$$

$$\frac{\partial}{\partial t}\left(\frac{\rho_{s,\alpha}}{\rho_{s}(0)}\right) = -\sum_{\beta=1}^{N_{r,\alpha}}r_{\alpha\beta} + S_{\alpha}$$

$$\dot{q}_{s}^{\prime\prime\prime\prime} = \dot{q}_{s,c}^{\prime\prime\prime} + \dot{q}_{s,r}^{\prime\prime\prime}$$

$$S_{\alpha} = \sum_{\alpha'=1}^{N_{m}}\sum_{\beta=1}^{N_{r,\alpha'}}v_{\alpha,\alpha'\beta}r_{\alpha'\beta} \qquad \text{(where Residue}_{\alpha'\beta} = \text{Material}_{\alpha}\text{)}$$

$$r_{\alpha\beta} = \underbrace{\left(\frac{\rho_{s,\alpha}}{\rho_{s}(0)}\right)^{n_{s,\alpha\beta}}}_{\text{Reactant dependency}} \underbrace{A_{\alpha\beta} \exp\left(-\frac{E_{\alpha\beta}}{RT_{s}}\right)}_{\text{Arrhenius function}} \underbrace{[X_{O_{2}}(x)]^{n_{O_{2},\alpha\beta}}}_{\text{Oxidation function}}$$

$$\dot{q}_{s,c}^{\prime\prime\prime}(x) = -\rho_{s}(0) \sum_{\alpha=1}^{N_{m}}\sum_{\beta=1}^{N_{r,\alpha}}r_{\alpha\beta}(x)H_{r,\alpha\beta}$$

FDS V&V

Verification

- Heat conduction and radiation through a plane layer
- Mass conservation and reaction rate

Validation

- Usually HRRPUA and MLRPUA
- Almost all published studies include model calibration.
- In the FDS Validation Guide: FAA and UMD Polymers have most parameters measured.

SPECIAL TOPICS AND CHALLENGES

Radiation transfer – models

Effective radiant conductivity of a porous medium

$$\dot{q}_r'' = -\underbrace{\left(4Fd\sigma T^3\right)}_k \frac{\partial T}{\partial x}$$

Beer-Lambert's law augmented by emission term

$$\frac{\partial q_{in}}{\partial x} = -q_{in}a_s, \quad \frac{\partial q_{out}}{\partial x} = f(a_sT^4)$$

- Unidirectional (normal) boundary condition

Two-flux model

$$\frac{1}{2} \frac{\partial q_{in}}{\partial x} = -(a_s + s_{back})q_{in} + s_{back}q_{out} + a_s\sigma T(x)^4$$
$$-\frac{1}{2} \frac{\partial q_{out}}{\partial x} = -(a_s + s_{back})q_{out} + s_{back}q_{in} + a_s\sigma T(x)^4$$

- Diffuse boundary condition

Radiation transfer – model features

- Beer's law is good when external radiation is unidirectional and internal sources are small.
- Two flux model is good when boundaries are diffuse and internal terms are significant.

Radiation transfer – spectral properties

Data is indicative only. Do not use!

Shrinking / swelling

- Shrinkage due to the non-charring pyrolysis or the collapse of microstructure
- Intumescence has huge impact on conductance.
 - Important for the heat barrier effect of fire / flame retardant materials.
 - Models are based on the density ratios.
 - Numerical solution schemes very different.
 - Predictive calculation in mixtures with strength-retaining matrix?

Figures: Rigid PU foams by Huntsman Polyurethanes (Europe).

Pressure build-up

Wood

- Contribution to cracking and possibly explosive removal of char¹
- Modelling studies^{2,3} show overpressures up to $p/p_0 \sim 1.2$

Polymer composites

 Role in delamination of layered structures

Need for 2D/3D solutions

- 2D/3D geometries
- Small-flame simulations
 - Length scales of the flame exposure and conduction are similar¹.

• Strongly anisotropic materials

- Wood
- Fibre-reinforced polymer composites
- Flame spread on electrical wires

Ð

Wire core

Downward sprea

¹ Wang et al. Fire Safety J. 54 (2012)
² Hu et al. Proc Comb Inst 35 (2015)

Discontinuities and small-scale 3D phenomena

Pyrolysis meets solid mechanics

orthotropy (FIR)

¹ Baroudi et al. Comb. Flame 182 (2017) ² Li et al. IAFSS 12 (2017)

Possible MaCFP topics

1D Pyrolysis

- Basic charring / non-charring material tests cases
- Internal gas transfer
- Determination of the heat of reaction
- Intumescense
- Internal radiation distribution and spectra

2D / 3D Pyrolysis

- Role of 2D/3D conduction in flame spread
- Anisotropic gas transfer
- Coupling with CFD and complex geometries
- Coupling of pyrolysis and solid mechanics