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Scales of pyrolysis modelling
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GOVERNING EQUATIONS



Condensed phase species
conservation
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ot
- Condensed phase = solid which does not move = u=0
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- Conservation of total mass as a sum of components.



(Gas species conservation

a¢10g,i

ZEAY- (up, )+ VI, =5,

- Porosity ¢ prescribed or solved
- Fickian diffusion = VJ, = _V¢DzVPgi
- No accumulation of gaseous components =

V’(upg,i): Sg,i



Condensed phase energy
conservation

- Neglecting the kinetic and potential energy and the external work
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- Solve radiation from separate equation = consider as a source/sink.
- Combine with mass conservation =
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Gas phase energy and momentum

Gas phase energy conservation
- Assuming unity Lewis number and transparent gas
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Gas phase momentum conservation
- Needed for finite mass fluxes and pressure calculation
- Darcy’s law, no gravity
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- Pressure evolution by combining this with continuity and ideal gas law



Chemical reaction source term

- Source term consists of the heat of pyrolysis (reaction) at reference
temperature and the difference between the heat capacities between
original material and the products
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- If we assume that the reaction takes place at the temperatur_e where
heat of reaction was determined, this simplifies to
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FDS PYROLYSIS MODEL



Approximations made in FDS

1D

No mass accumulation

Instantaneous mass transfer

Thermal equilibrium between gases and solids

A o A

Chemical source term as a heat of reaction
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Pyrolysis model equations for FDS
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FDS V&V

Verification

- Heat conduction and radiation through a plane layer

- Mass conservation and reaction rate

Validation
- Usually HRRPUA and MLRPUA

- Almost all published studies include
model calibration.

- In the FDS Validation Guide: FAA
and UMD Polymers have most
parameters measured.
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FAA Polymers
Pool Fires

* UMD Polymers

10’

Measured Burning Rate {kg-"mz.-"s}

10



SPECIAL TOPICS AND CHALLENGES



Radiation transfer — models

Effective radiant conductivity of a porous medium

§" = (4FdGT3)ZT
X

Beer-Lambert’s law augmented by emission term

oq. 0 04 s
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Ox
- Unidirectional (normal) boundary condition

Two-flux model
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- Diffuse boundary condition
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Radiation transfer — model features

a=100m™, q_ =30 kW/m?
ext
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Beer’s law Two-flux | = s WO
g T.=20 C, Beer-Lambert
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—Ts=400 C, Beer-Lambert
——
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- Beer’s law is good when external radiation is unidirectional and
internal sources are small.

- Two flux model is good when boundaries are diffuse and internal
terms are significant.
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Radiation transfer — spectral properties

MMA monomer
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Shrinking / swelling

* Shrinkage due to the non-charring pyrolysis or the collapse of
microstructure

* Intumescence has huge impact on conductance.
* Important for the heat barrier effect of fire / flame retardant materials.
 Models are based on the density ratios.
* Numerical solution schemes very different.
* Predictive calculation in mixtures with strength-retaining matrix?

Figures: Rigid PU foams by Huntsman Polyurethanes (Europe).
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Pressure build-up

Wood
- Contribution to cracking and possibly explosive removal of chart
- Modelling studies?3 show overpressures up to p/p, ~ 1.2
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Need for 2D/3D solutions

* 2D/3D geometries

 Small-flame simulations

* Length scales of the flame exposure
and conduction are similar?.

e Strongly anisotropic materials

e Wood

* Fibre-reinforced polymer

composites

* Flame spread on electrical wires

I Wang et al. Fire Safety J. 54 (2012)
2 Hu et al. Proc Comb Inst 35 (2015)
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Flame spread rate, FSR (em/s)
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Discontinuities and small-scale 3D
phenomena
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Pyrolysis meets solid mechanics
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Possible MaCFP topics

1D Pyrolysis

Basic charring / non-charring material tests cases
Internal gas transfer

Determination of the heat of reaction
Intumescense

Internal radiation distribution and spectra

2D / 3D Pyrolysis

Role of 2D/3D conduction in flame spread
Anisotropic gas transfer

Coupling with CFD and complex geometries
Coupling of pyrolysis and solid mechanics
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