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Classical research scenario
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Scales of pyrolysis modelling
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GOVERNING EQUATIONS
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Condensed phase species
conservation

- Condensed phase = solid which does not move ⇑ u = 0

- Conservation of total mass as a sum of components.
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Gas species conservation

- Porosity ε prescribed or solved
- Fickian diffusion ⇑
- No accumulation of gaseous components ⇑
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Condensed phase energy
conservation

- Neglecting the kinetic and potential energy and the external work

- Solve radiation from separate equation ⇑ consider as a source/sink.
- Combine with mass conservation ⇑
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Gas phase energy and momentum

Gas phase energy conservation
- Assuming unity Lewis number and transparent gas

Gas phase momentum conservation
- Needed for finite mass fluxes and pressure calculation
- Darcy’s law, no gravity

- Pressure evolution by combining this with continuity and ideal gas law
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Chemical reaction source term

- Source term consists of the heat of pyrolysis (reaction) at reference
temperature and the difference between the heat capacities between
original material and the products

- If we assume that the reaction takes place at the temperature where
heat of reaction was determined, this simplifies to
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FDS PYROLYSIS MODEL
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Approximations made in FDS

1. 1D
2. No mass accumulation
3. Instantaneous mass transfer
4. Thermal equilibrium between gases and solids
5. Chemical source term as a heat of reaction
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Pyrolysis model equations for FDS
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FDS V&V

Verification
- Heat conduction and radiation through a plane layer
- Mass conservation and reaction rate
Validation
- Usually HRRPUA and MLRPUA
- Almost all published studies include

model calibration.
- In the FDS Validation Guide: FAA

and UMD Polymers have most
parameters measured.
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SPECIAL TOPICS AND CHALLENGES
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Radiation transfer – models

Effective radiant conductivity of a porous medium

Beer-Lambert’s law augmented by emission term

- Unidirectional (normal) boundary condition
Two-flux model

- Diffuse boundary condition
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Radiation transfer – model features

Beer’s law Two-flux

- Beer’s law is good when external radiation is unidirectional and
internal sources are small.

- Two flux model is good when boundaries are diffuse and internal
terms are significant.

17



Radiation transfer – spectral properties
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1000 K spectrum

Data is indicative only. Do not use!

960 m-1 from Jiang et al., Fire Safety J 44 (2009)NIST Chemistry webbook (2017)



Shrinking / swelling

• Shrinkage due to the non-charring pyrolysis or the collapse of
microstructure

• Intumescence has huge impact on conductance.
• Important for the heat barrier effect of fire / flame retardant materials.
• Models are based on the density ratios.
• Numerical solution schemes very different.
• Predictive calculation in mixtures with strength-retaining matrix?
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Figures: Rigid PU foams by Huntsman Polyurethanes (Europe).



Pressure build-up

Wood
- Contribution to cracking and possibly explosive removal of char1

- Modelling studies2,3 show overpressures up to p/p0 } 1.2

Polymer composites
- Role in delamination of layered

structures
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1 Emmons, H.W. Fire Safety Sci 1 (1986)
2 Di Blasi, C. Int. J. Heat Mass Trans 41 (1998)
3 Baum & Atreya, Proc. Comb Inst 31 (2007)



Need for 2D/3D solutions

• 2D/3D geometries
• Small-flame simulations

• Length scales of the flame exposure
and conduction are similar1.

• Strongly anisotropic materials
• Wood
• Fibre-reinforced polymer

composites
• Flame spread on electrical wires
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Discontinuities and small-scale 3D
phenomena
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Pyrolysis meets solid mechanics
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orthotropy (FIR)isotropy (MDF)
1 Baroudi et al. Comb. Flame 182 (2017)
2 Li et al. IAFSS 12 (2017)



Possible MaCFP topics

1D Pyrolysis
- Basic charring / non-charring material tests cases
- Internal gas transfer
- Determination of the heat of reaction
- Intumescense
- Internal radiation distribution and spectra

2D / 3D Pyrolysis
- Role of 2D/3D conduction in flame spread
- Anisotropic gas transfer
- Coupling with CFD and complex geometries
- Coupling of pyrolysis and solid mechanics

24


