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Gpyro

§ Open source pyrolysis model
– http://reaxengineering.com/trac/gpyro

§ Solves 0D/1D/2D/3D conservation equations inside 
pyrolyzing solid for
– Gas and solid mass, species, and energy
– Gas momentum (Darcy’s law)

§ Philosophy:  user specifies desired level of complexity
– Reaction mechanism
– Anisotropic thermal and transport properties
– Physics
– Geometry & boundary conditions
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Generalized Pyrolysis Model,” Fire Safety Science 11: 193-207 
(2014). 



Gpyro Development History

§ 2004-2007:   Initial development under NASA GSRP; 
basic 0D/1D formulation + GA optimization

§ 2008-2010:  Continued development (NSF);  
Extension to 2D, improved pressure solver & transport

§ 2011:  Initial 3D solver development (DOE)
§ 2011-current:  Generalized 3D formulation, IC’s, BC’s. 

FDS coupling, parallelization, improved solvers
§ 2015-current:  Coupling to ABAQUS for predicting 

stress development during manufacturing of polymer 
infiltration and pyrolysis based ceramic matrix 
composites 



Complex Geometry

§ Geometry specified as rectilinear obstructions
– Charcoal briquette example

0.5 mm resolution1.0 mm resolution



Complex Geometry

§ PyroSim GUI used to import 3D geometries in .stl 
(Stereolithography) format and write obstructions in 
fortran namelist group format for parsing by Gpyro: 

&OBST XB= -0.074, -0.072, -0.064, -0.062, 0.010, 0.014 / 

&OBST XB= -0.074, -0.072, -0.062, -0.060, 0.010, 0.014 / 

&OBST XB= -0.074, -0.072, -0.060, -0.058, 0.010, 0.014 /

&OBST XB= -0.074, -0.072, -0.058, -0.056, 0.008, 0.016 / 



Postprocessing

§ NIST Smokeview for post-processing/visualization

10 s 20 s

30 s 40 s

Pressure evolution in heated particle



Anisotropic Microstructure

White spruce (softwood) Red maple (hardwood)

§ Gpyro’s 3D formulation developed with anisotropic 
materials in mind



Thermal & Transport Properties

§ Anisotropic permeability and thermal conductivity
§ User can specify for each solid species i:

– kx,i(T), ky,i(T), kz,i(T)
– Kx,i, Ky,i, Kz,i (no T dependency)

§ Temperature variations in k, r, and c modeled as:

§ Weighted properties used in conservation equations:
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Kinetics & Reactions

§ Reaction stoichiometry is general and user-specifiable

§ Solid-phase pyrolysis reactions convert one solid 
phase species to another (e.g., wood to char) and 
generate one or more gaseous species (tar, gas, etc.)

§ Gases in pore space can react
– Homogeneously with other gaseous species
– Heterogeneously with condensed phase species



Condensed-Phase Kinetic Models

§ Currently 9 different kinetic models implemented:

Kinetic models - m f( ):
ikinetic model f( ) Description

0 (1- )n Default - nth order
1 (1/n) (1- ) (-ln(1- ))1-n Nucleation and nucleus growing
2 (1- )n Phase boundary reaction
3 (1/2) Diffusion – plane symmetry
4 (-ln(1- ))-1 Diffusion- cylindrical symmetry
5 (3/2) ((1- )-1/3 - 1)-1 Diffusion – spherical symmetry
6 (3/2) (1- )-1/3 -1 Diffusion – Jander’s type
7 (1/n) 1-n Potential law
8 (1/n) (1- )1-n Reaction order
9 (1- )n (1 + Kcat icat) Catalytic



Solid 
mass

Gas 
mass

Solid 
species

Gas 
species

Mass and Species Conservation
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Solid 
energy

Gas 
energy

Tg = T (can also explicitly solve gas energy)

Solid 
mom. N/A (no movement/shrinkage of solid phase in 3D)

Gas 
mom.

Solved as pressure evolution equation derived from mass 
conservation, Darcy’s law, and ideal gas law

Energy and Momentum Conservation
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Numerical Solution (Patankar)
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Numerical Solution Methodology

§ Fully implicit formulation
– Multiple iterations per timestep

§ Relaxation to prevent solution divergence
§ Special treatment of reaction source terms to ensure 

non-negative mass fractions
§ Line by line TDMA solver

– TDMA in one direction, Gauss Seidel iteration in other 2
– TDMA direction alternated between iterations

§ Convergence determined from user-specified residuals



Verification – “Cartesian Sphere” with 
Internal Heat Generation
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Verification – Heat Conduction in 3D 
Parallelepiped

t = 60 s

t = 1200 s

Solution % Error



Gpyro Coupling to FDS

§ Fully coupled to Fire 
Dynamics Simulator 

§ Limitations
– Geometry is static – no 

shrinkage 
– Objects can’t  “burn away”



Input Deck

§ Excel-based “front end” with VB macros
§ Miller and Beland reaction mechanism example:



Input File Structure

§ Fortran namelist-group based inputs

&GPYRO_RXNS 
NRXNS    = 10, 
CFROM(1) = 'cellulose',
CTO(1)   = 'active_cellulose',
Z(1)     = 2.8E+19,
E(1)     = 242.4 …

§ Can be generated with Excel-based front end or edited 
manually with a text editor



Outputs

§ Three primary types of output
– Point dumps:  Write specific quantity at particular x,y,z

location to .csv file as function of time
– Profile dumps:  Dumps a quantity in one the profile 

direction, e.g. T(z) at fixed x,y as function of time
– Slice dumps:  Dump quantity in a plane to binary file format 

that can be post-processed in NIST’s Smokeview

§ Can also dump integrated quantities
– Total mass, total mass loss, instantaneous mass loss rate, etc.



Current Limitations

§ Particle shrinkage / swelling not accounted for in 
2D/3D formulation (only in 1D)

§ No submodel for liquid transport 
§ Underlying grid is Cartesian so curved surfaces have 

to be approximated by “stair stepping”
§ FDS geometry is static
§ Basic error checking in place but spurious inputs can 

lead to segmentation fault with no error message
§ Documentation lags current code



Example – 1D Wood Pyrolysis  

§ Representative softwood thermal properties
§ 3 mm particle heated on both faces
§ Miller and Beland 9-step reaction mechanism

– Cellulose, hemicellulose, lignin
§ Demonstrate cariable gas/tar yields with heating rate

– Slow pyrolysis:  9 kW/m2

– “Fast” pyrolysis:  75 kW/m2



Example – 1D Wood Pyrolysis – Slow  
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Example – 1D Wood Pyrolysis – “Fast” 
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Questions?

lautenberger@reaxengineering.com


