
Gpyro: A Three Dimensional Generalized Pyrolysis Model

Measurement and Computation of Fire Phenomena IAFSS Workshop June 11, 2017

Chris Lautenberger lautenberger@reaxengineering.com 510-629-4930 x801

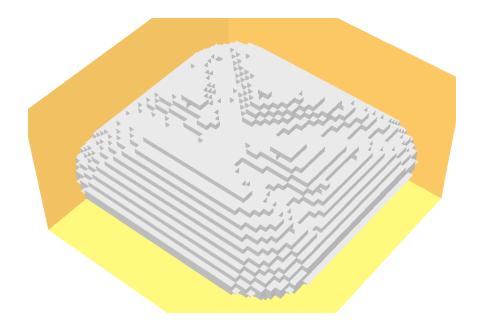
> Reax Engineering Inc. 1921 University Avenue Berkeley, CA 94704

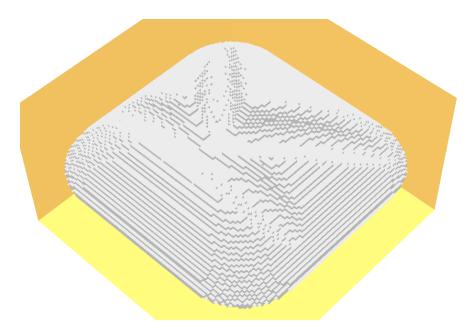
- Open source pyrolysis model
 - <u>http://reaxengineering.com/trac/gpyro</u>
- Solves 0D/1D/2D/3D conservation equations inside pyrolyzing solid for
 - Gas and solid mass, species, and energy
 - Gas momentum (Darcy's law)
- Philosophy: user specifies desired level of complexity
 - Reaction mechanism
 - Anisotropic thermal and transport properties
 - Physics
 - Geometry & boundary conditions

Some Background Publications

- Lautenberger, C. & Fernandez-Pello, A.C., "Generalized Pyrolysis Model for Combustible Solids," *Fire Safety Journal* 44 819-839 (2009).
- Lautenberger, C. & Fernandez-Pello, A.C., "A Model for the Oxidative Pyrolysis of Wood," *Combustion and Flame* 156 1503-1513 (2009).
- Dodd, A.B., Lautenberger, C., & Fernandez-Pello, A.C., "Computational Modeling of Smolder Combustion and Spontaneous Transition to Flaming," *Combustion and Flame* 159 448–461 (2012).
- Lautenberger, C., "Gpyro3D: A Three Dimensional Generalized Pyrolysis Model," *Fire Safety Science* 11: 193-207 (2014).

Gpyro Development History




- 2004-2007: Initial development under NASA GSRP; basic 0D/1D formulation + GA optimization
- 2008-2010: Continued development (NSF);
 Extension to 2D, improved pressure solver & transport
- 2011: Initial 3D solver development (DOE)
- 2011-current: Generalized 3D formulation, IC's, BC's.
 FDS coupling, parallelization, improved solvers
- 2015-current: Coupling to ABAQUS for predicting stress development during manufacturing of polymer infiltration and pyrolysis based ceramic matrix composites

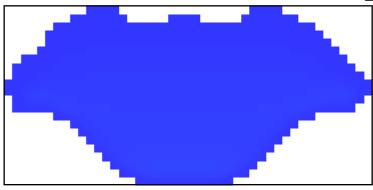
Complex Geometry

- Geometry specified as rectilinear obstructions
 - Charcoal briquette example

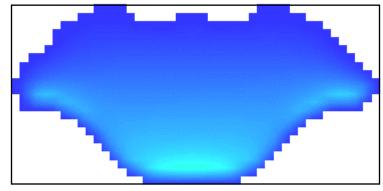
1.0 mm resolution

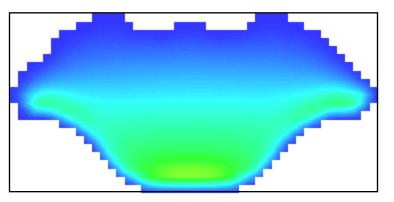
0.5 mm resolution

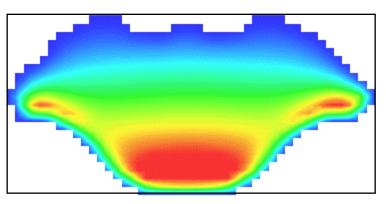
Complex Geometry


 PyroSim GUI used to import 3D geometries in .stl (Stereolithography) format and write obstructions in fortran namelist group format for parsing by Gpyro:

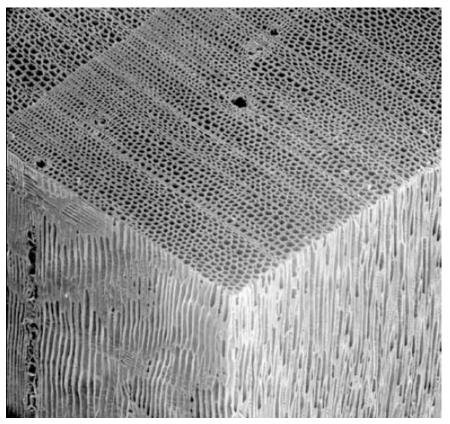
&OBST XB= -0.074, -0.072, -0.064, -0.062, 0.010, 0.014 / &OBST XB= -0.074, -0.072, -0.062, -0.060, 0.010, 0.014 / &OBST XB= -0.074, -0.072, -0.060, -0.058, 0.010, 0.014 / &OBST XB= -0.074, -0.072, -0.058, -0.056, 0.008, 0.016 /


Postprocessing

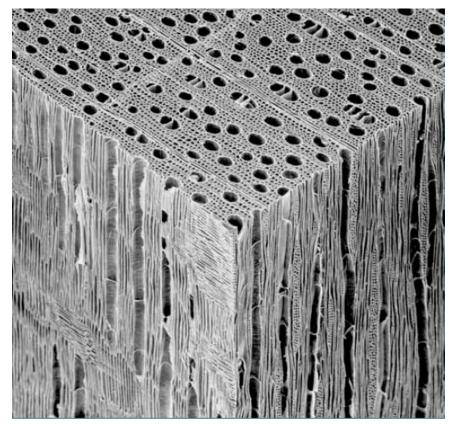

NIST Smokeview for post-processing/visualization



20 s



^{30 s} 40 s Pressure evolution in heated particle


Anisotropic Microstructure

Gpyro's 3D formulation developed with anisotropic materials in mind

White spruce (softwood)

Red maple (hardwood)

Thermal & Transport Properties

- Anisotropic permeability and thermal conductivity
- User can specify for each solid species *i*:
 - $k_{x,i}(T), k_{y,i}(T), k_{z,i}(T)$
 - $K_{x,i}, K_{y,i}, K_{z,i}$ (no *T* dependency)
- Temperature variations in k, ρ , and c modeled as:

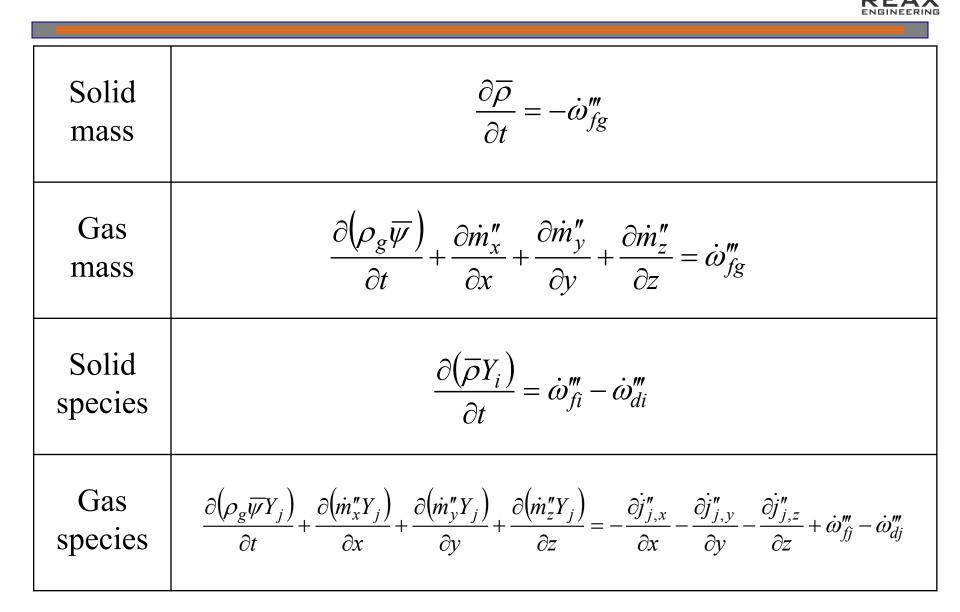
$$\phi(T) = \phi_0 \left(\frac{T}{T_r}\right)^{n_q}$$

Weighted properties used in conservation equations:

$$\overline{k_x} = \sum X_i k_{x,i}$$

- Reaction stoichiometry is general and user-specifiable
- Solid-phase pyrolysis reactions convert one solid phase species to another (e.g., wood to char) and generate one or more gaseous species (tar, gas, etc.)
- Gases in pore space can react
 - Homogeneously with other gaseous species
 - Heterogeneously with condensed phase species

Condensed-Phase Kinetic Models



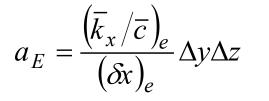
• Currently 9 different kinetic models implemented:

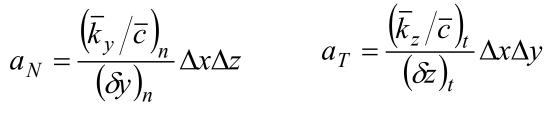
i _{kinetic} model	f()	Description				
0	(1-) ⁿ	Default - n th order				
1	(1/n) (1-) (-ln(1-)) ¹⁻ⁿ	Nucleation and nucleus growing				
2	(1-) ⁿ	Phase boundary reaction				
3	(1/2)	Diffusion – plane symmetry				
4	(-In(1-)) ⁻¹	Diffusion- cylindrical symmetry				
5	(3/2) ((1-) ^{-1/3} - 1) ⁻¹	Diffusion – spherical symmetry				
6	(3/2) (1-) ^{-1/3 -1}	Diffusion – Jander's type				
7	(1/n) ¹⁻ⁿ	Potential law				
8	(1/n) (1-) ¹⁻ⁿ	Reaction order				
9	$(1-)^{n}(1 + K_{cat icat})$	Catalytic				

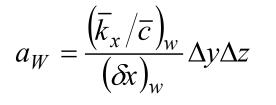
Kinetic models - ${}^{m}f()$:

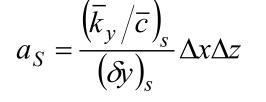
Mass and Species Conservation

Energy and Momentum Conservation



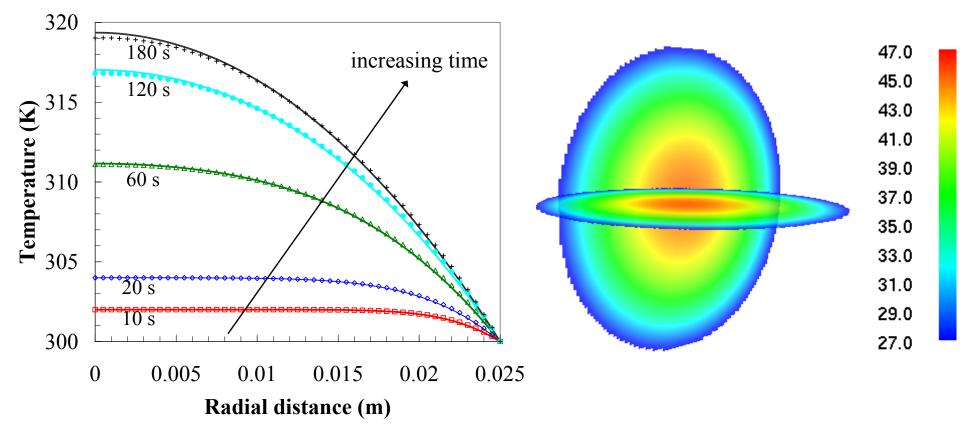

Solid energy	$\frac{\partial \left(\overline{\rho}\overline{h}\right)}{\partial t} + \frac{\partial \left(\dot{m}_{x}''h_{g}\right)}{\partial x} + \frac{\partial \left(\dot{m}_{y}''h_{g}\right)}{\partial y} + \frac{\partial \left(\dot{m}_{z}''h_{g}\right)}{\partial z} = -\frac{\partial \dot{q}_{x}''}{\partial x} - \frac{\partial \dot{q}_{y}''}{\partial y} - \frac{\partial \dot{q}_{z}''}{\partial z} + \dot{Q}_{s}''' + \sum_{i=1}^{M} \left(\dot{\omega}_{fi}''' - \dot{\omega}_{di}'''\right)h_{i}$								
Gas energy	$T_g = T$ (can also explicitly solve gas energy)								
Solid mom.	N/A (no movement/shrinkage of solid phase in 3D) Solved as pressure evolution equation derived from mass conservation. Darcy's law, and ideal gas law								
Gas mom.									


Numerical Solution (Patankar)

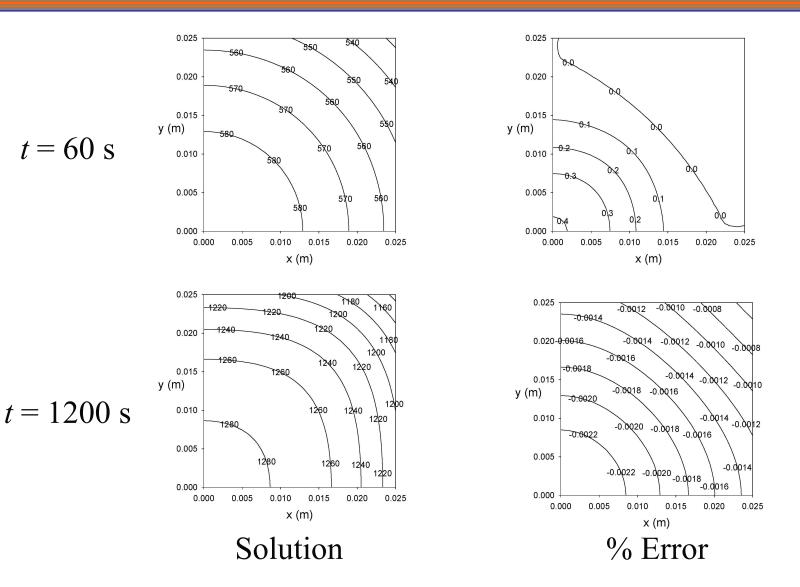


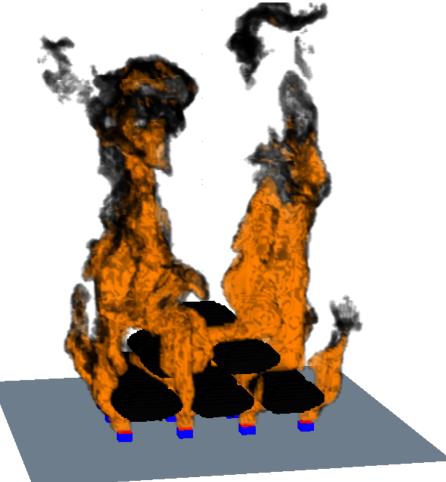

$$a_p \phi_P = a_E \phi_E + a_W \phi_W + a_s \phi_S + a_N \phi_N + a_T \phi_T + a_B \phi_B + b_P$$

$$\begin{split} b_P &= a_P^{\circ} h_P^{\circ} + \dot{S}_P^{\prime\prime\prime} \Delta x \Delta y \Delta z \\ \dot{S}_P^{\prime\prime\prime} &= \dot{Q}_s^{\prime\prime\prime} + \sum_{i=1}^M \left(\dot{\omega}_{fi}^{\prime\prime\prime} - \dot{\omega}_{di}^{\prime\prime\prime} \right) h_i - \frac{\partial \left(\dot{m}_x^{\prime\prime} h_g \right)}{\partial x} - \frac{\partial \left(\dot{m}_y^{\prime\prime} h_g \right)}{\partial y} - \frac{\partial \left(\dot{m}_z^{\prime\prime} h_g \right)}{\partial z} \\ a_p &= a_E + a_W + a_S + a_N + a_T + a_B + a_P^{\circ} \qquad \qquad a_P^{\circ} = \overline{\rho}_P^{\circ} \frac{\Delta x \Delta y \Delta z}{\Delta t} \end{split}$$


Numerical Solution Methodology

- Fully implicit formulation
 - Multiple iterations per timestep
- Relaxation to prevent solution divergence
- Special treatment of reaction source terms to ensure non-negative mass fractions
- Line by line TDMA solver
 - TDMA in one direction, Gauss Seidel iteration in other 2
 - TDMA direction alternated between iterations
- Convergence determined from user-specified residuals


Verification – "Cartesian Sphere" with Internal Heat Generation


Verification – Heat Conduction in 3D Parallelepiped

Gpyro Coupling to FDS

- Fully coupled to Fire Dynamics Simulator
- Limitations
 - Geometry is static no shrinkage
 - Objects can't "burn away"

Input Deck

- Excel-based "front end" with VB macros
- Miller and Beland reaction mechanism example:

🕱 Microsoft Excel - gpyro.xls																
Eile Edit View Insert Format Tools Data Window Help																
. L 🚰 🛃 🛃 🛃 🛃 🖏 🖏 🐇 🗈 🛍 ▾ 💞 🖤 ▾ 🔍 ▾ 😣 Σ ▾ ટੈ↓ Χ↓ 🛄 🏘 100% 🔹 🞯 📑 Arial 🔹 🔹 I0 💌 B Ζ Ψ 🗐 票 冨 🖼 \$ % > ‰ 🖧 掌 દ																
■ Qptions ▼																
$T21 - f_{\star}$																
	А	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р
1	10	nrxns	# of reactions													
2																
3	Specify re	actions below. If 'To' spe	ecies is not the name of a s	species spec	cified in the	'props' work	sheet, it is as	sumed t	o be gase	ous						
	IRXN	From (species A)	To (species B)	Z	E	ΔH _s	ΔH_{v}	χ	n	n _{o2}		i ryn	m	K _{cat}		Tcrit
4	INAN	From (species A)	TO (Species D)	(s ⁻¹)	(kJ/mol)	(J/kg)	(J/kg)	(-)	(-)	(-)	Ikinetic model	i ₀₂ rxn	(-)	(-)	i _{cat}	(K)
5	1	cellulose	active_cellulose	2.80E+19	242.4	0.00E+00	0.00E+00	1	1.00	0	0	0	0	0	0	0
6	2	active_cellulose	pseudo_cellulose	3.28E+14	196.5	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
7	3	active_cellulose	char_cellulose	1.30E+10	150.5	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
8	4	hemicellulose	active_hemicellulose	2.10E+16	186.7	0.00E+00	0.00E+00	1	1.00	0	0	0	0	0	0	0
9	5	active_hemicellulose	pseudo_hemicellulose	8.75E+15	202.40	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
10	6	active_hemicellulose	char_hemicellulose	2.60E+11	145.70	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
11	7	lignin	active_lignin	9.60E+08	107.60	0.00E+00	0.00E+00	1	1.00	0	0	0	0	0	0	0
12	8	active_lignin	pseudo_lignin	1.50E+09	143.80	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
12 13 14 15 16	9	active_lignin	char_lignin	7.70E+06	111.40	2.55E+05	2.55E+05	1	1.00	0	0	0	0	0	0	0
14	10	moisture	voids	4.30E+03	43.8	2.20E+06	2.20E+06	1	1.00	0	0	0	0	0	0	0
15																
16																

Input File Structure

Fortran namelist-group based inputs

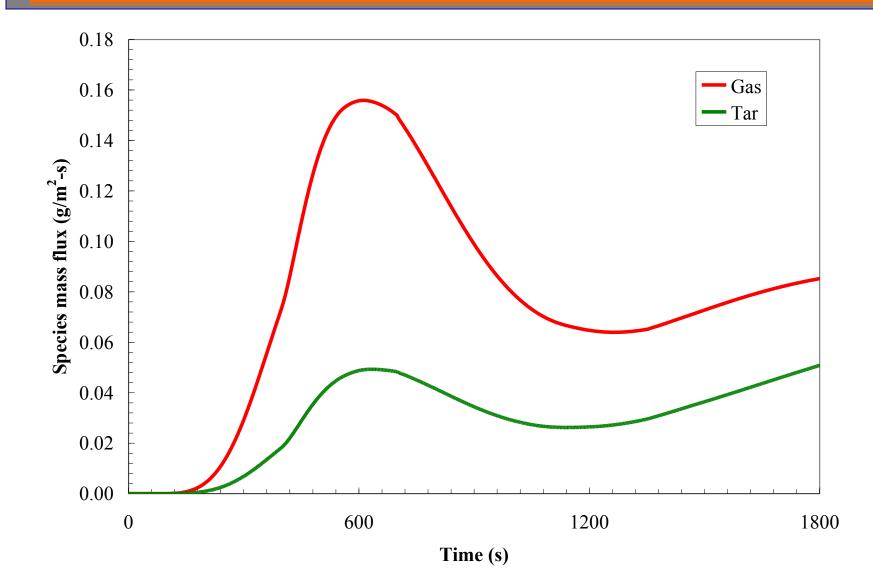
• Can be generated with Excel-based front end or edited manually with a text editor

Outputs

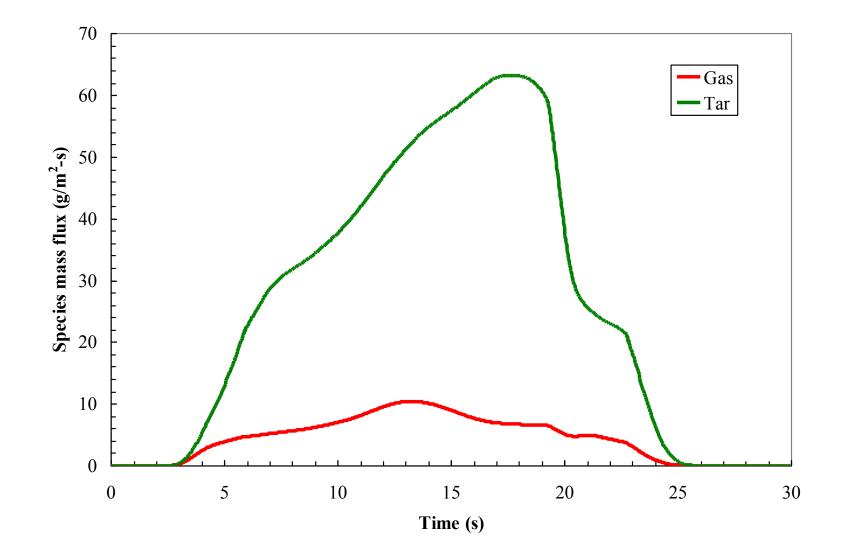
- Three primary types of output
 - Point dumps: Write specific quantity at particular x,y,z location to .csv file as function of time
 - Profile dumps: Dumps a quantity in one the profile direction, *e.g.* T(z) at fixed *x*,*y* as function of time
 - Slice dumps: Dump quantity in a plane to binary file format that can be post-processed in NIST's Smokeview
- Can also dump integrated quantities
 - Total mass, total mass loss, instantaneous mass loss rate, etc.

Current Limitations

- Particle shrinkage / swelling not accounted for in 2D/3D formulation (only in 1D)
- No submodel for liquid transport
- Underlying grid is Cartesian so curved surfaces have to be approximated by "stair stepping"
- FDS geometry is static
- Basic error checking in place but spurious inputs can lead to segmentation fault with no error message
- Documentation lags current code


Example – 1D Wood Pyrolysis

- Representative softwood thermal properties
- 3 mm particle heated on both faces
- Miller and Beland 9-step reaction mechanism
 Cellulose, hemicellulose, lignin
- Demonstrate cariable gas/tar yields with heating rate
 - Slow pyrolysis: 9 kW/m²
 - "Fast" pyrolysis: 75 kW/m²



Example – 1D Wood Pyrolysis – Slow

Example – 1D Wood Pyrolysis – "Fast"

lautenberger@reaxengineering.com