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The Fire Problem

• Material burning behavior, flame 
spread, early fire growth governed 
by positive feedback between:
– Gas phase heat transfer

• Flame to surface heating
• External radiation

– Condensed phase pyrolysis
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• Thermal models
– Assume infinitely-fast reaction at a single 

pyrolysis temperature (e.g. ignition and 
burning of a thermally thick solid)

• Analytical and Algebraic Models
– Bamford et al.1 (1945)
– Tewarson et al.2 (1979)
– Kanury3 (1994) 

Early Condensed-Phase 
Degradation Models
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State of the Art Computational
Pyrolysis Solvers
• FDS4, Gpyro5, ThermaKin6

– Temperature-resolved 
thermophysical properties

– Account for chemical degradation
– Multiple components
– In-depth radiation 

absorption/emission
– Structural changes

• Intumescence, burnout
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Modeling Framework
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Condensed Phase Pyrolysis
• Degradation Reaction 

Mechanism
– Degradation Kinetics (A, E, ν)

– Heats of Reactions (hi)

– Heat Capacities (cp)

– Heats of Combustion (ΔHc)

• Transport
– Thermal Conductivity (k)

– Absorption Coefficient (α)

– Emissivity (ε)
– Rheology/viscosity (η)

– Gas Transfer (λ)

Sample             Flame heat transfer
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Pyrolysis Model Parameterization
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•Goal: 
–Develop a systematic methodology 

to parameterize and validate 
condensed phase pyrolysis models

• Model Parameterization
• Literature Review
• Direct Measurement
• Semi-Empirical Correlations
• Inverse Analysis of Experiments

– Multi-Dimensional Optimization 
Algorithms7-9

– Manually Iterative Analyses10-12
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Pyrolysis Model Parameterization
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• Experimental approach 
–Conduct as few physical tests as 

possible
– Isolate parameters through each 

physical test
–Validate model parameters across a 

range of scales, outside of calibration 
conditions
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Pyrolysis Model Parameterization
Introduction

The Fire Problem

Pyrolysis Modeling
Model Development
Parameterization

Experimental
TGA – Reaction Kinetics
DSC – Reaction 
Thermodynamics
MCC – Heat of 
Combustion

Conclusions

• Thermogravimetric Analysis (TGA) 
– Degradation Reaction Mechanism
– Thermal Degradation Kinetics (A, E, ν)

• Differential Scanning Calorimetry (DSC)
– Heat Capacities of Components (cp)
– Heats of Degradation Reactions (hi)

• Microscale Combustion Calorimetry (MCC) 
– Degradation Reaction Mechanism
– Thermal Degradation Kinetics (A, E, ν)

– Heats of Combustion of volatiles (ΔHc)
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Case Study: Poly(butylene terepthalate) (PBT)



Simultaneous Thermal Analysis

• Simultaneously conduct 
TGA/DSC
– Sample masses 4-7 mg
– Heating rates of 10, 5, and 

20 K min⁻¹ (typically up to 
T = 873 K)

– Continuously purged N₂
atmosphere

– TGA: measure mass of 
sample as a function of 
temperature

– DSC: measure heat flow 
to sample as a function of 
temperature

Slide 12
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Microscale Combustion 
Calorimeter (MCC)

14

MCC
• Sample mass 3-5 mg
• Heating rate of 10 K min⁻¹

Pyrolyzer
• Continuously purged with N₂

• Well-defined temperature 
program

• Gaseous pyrolyzate freely flows to 
combustion chamber

Combustor
• Pyrolyzate reacts with excess O₂

• HRR measured by oxygen 
consumption calorimetry

Pyrolyzer

Combustor

𝐻𝑅𝑅 = 

𝑖=1

𝑁𝑟

ν𝑗𝑟𝑖Δ𝐻𝑐
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Inverse Analysis of TGA Data: 
Reaction Kinetics
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• Maintain simplest model that captures 
defining characteristics of mass & mass 
loss rate data from STA tests

• First (and second) order reactions 
arranged in series or parallel

𝑟𝑖 = 𝐴𝑖 exp(−𝐸𝑖/𝑅𝑇)𝜉𝑘𝜉𝑙

– Reaction: a mass loss or heat flow event that 
can be mathematically represented by the 
Arrhenius equation

– Component: a collection of chemical 
species that exist over a common 
temperature range

IAFSS 2017 – MaCFP Condensed Phase Subgroup

Component 
ConcentrationsReaction Rate
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• Arrhenius Reaction: PBT→ ν(PBT𝑅𝑒𝑠) + (1 - ν)(PBT𝐺𝑎𝑠)

• Criteria for iterative inverse analysis:
– ∆𝑇peak ≤ 5𝐾
– Height of MLR peak within 5%
– Prediction of  mass residue within 3%

1

1

•

•

𝐴
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Case Study: Poly(butylene terepthalate) (PBT)

𝐴, 𝐸, ν



Inverse Analysis of DSC Data: 
Reaction Thermodynamics
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• Maintain simplest model that captures 
heat flow rate data from STA tests
– Maintain consistency with TGA mass & mass 

flow rate data

• Determine heat capacities (cp) and 
reaction energetics (hi)

ሶ𝑞 = 
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Sensible 
Enthalpy

Heats of 
Reactions

Temperature dependent; 
determined from 

degradation kinetics
𝑑𝑇

𝑑𝑡
𝑡 = 𝑏1 1 − exp −𝑏2𝑡 cos 𝑏3𝑡 + 𝑏4 sin 𝑏3𝑡



PBT→ PBTMelt

PBTMelt→ ν(PBT𝑅𝑒𝑠) + (1 - ν)(PBT𝐺𝑎𝑠)

Inverse Analysis of DSC Data: 
Reaction Thermodynamics
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• Criteria for inverse analysis:
– ∆𝑇peak ≤ 5𝐾
– Average mean error within 10%
– Prediction of integral heat flow 

within 5%
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PBT→ ν(PBT𝑅𝑒𝑠 )+ (1 - ν)(PBT𝐺𝑎𝑠)

From kinetics



Inverse Analysis of MCC Data:
Heat of Combustion
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1 1

• MCC data further validates reaction mechanism 
developed from STA experiments

• Criteria for inverse analysis:
– ∆𝑇peak ≤ 5𝐾
– Average mean error within 10%
– Prediction of integral heat flow within 5%
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• A reaction mechanism is developed that 
simultaneously reproduces test data from 
TGA, DSC, and MCC experiments

• Extrapolate reaction mechanism to:
– Varied heating rates
– Unified models of material degradation 

and burning
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Model Validation at Varied 
Heating Rates (5, 20 K min-1)
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Application to Complex Systems
• Polyamide66 (PA66) + Red Phosphorous

– Interactions between components 
– Parallel and series reactions
– Varied compositions, heating rates
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Application to Complex Systems
• Polyamide66 (PA66) + Red Phosphorous (RP)

– Interactions between components 
– Parallel and series reactions
– Varied compositions, heating rates
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• Systematic methodology to characterize 
materials for pyrolysis models applied to:
– Non-charring polymers13

– Charing-polymers14

– Composite materials (cardboard, carpet, 
carbon-fiber/epoxy, fiberglass)15-18

– Polymers with fire retardants active in the solid 
phase (i.e. red phosphorous)19

• Foundation for prediction of material 
degradation and burning:
– 1D gasification11,12,20,21

– 2D Flame spread22
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