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Why is Pyrolysis of interest?

3 Onset and evolution of material degradation.
$ A driver of ignition and flame spread.
3 Burning with flame, or without flame.

4 %Jniversity'mé Queensland, 2016



“..22m century to advance knowledge
in chemistry and physics to the state
that most required fire knowledge
could be computed from first
principles...”
Prof. Howard Emmons, Harvard, 1984

» He predicted that turbulence will be solved before pyrolysis.

» Note: Prof. Emmons is the founding father of Fire Science and
also of Turbulence.

» Given that the historical ratio of #researchers working on
pyrolysis per #researchers working on turbulence is 1/500, we
are making sure he is right.

@; Emmons, History of Further Fire Science, Fire Technology, 1984



Pyrolysis: multiphysics problem

Phase change

Material properties

Conduction heat transfer and
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Pyrolysis: the simultaneous chemical decomposition and
phase change that provide the gaseous fuel feeding the
flame burning over a solid. Controlled by heat transfer

and condensed-phase kinetics



Chemistry vs. Heat Transfer
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Richter and Rein, in 8th European Combustion Meeting (2017).

= Ratio of chemical to physical times
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Transport parameters:

W. C. Park, A. Atreya, H. R. Baum,
Determination of pyrolysis temperature for
charring materials. Proc. Combust. Inst. 32 I,
2471-2479 (2009).

Kinetic parameters:

Y.-C. Lin, J. Cho, G. a. Tompsett, P. R.
Westmoreland, G. W. Huber, Kinetics and
Mechanism of Cellulose Pyrolysis. J. Phys.
Chem. C. 113, 20097-20107 (2009).

Charring rate:

P. B. Cachim, J. M. Franssen, Assessment
of Eurocode 5 charring rate calculation
methods. Fire Technol. 46, 169-181 (2010).



The following material, up to the conclusions,

1s extracted from these two journal papers:

Bal and Rein, Fire Safety Journal , 2013

http://dx.doi.org/10.1016/j.firesaf.2013.08.015
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ARTICLE INFO ABSTRACT
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Pyrolysis

reality has led Lo the recent yrowth of complexity in pyrolysis modelling seen in the lLerature. How
ever, as we show in this work, the comparison of several conceptual models predicting the same
experimental results does not suppoit this assumprion, bur reveals the presence of unnecessary
complexity and mulliple sources of uncertainty, Using 4 novel approach corresponding (o 4 mechauism
sensilivity. the influence of the heat, mass and chemical mechanisms on the ransient predictions of
sutlace lemperalure and mass loss tale (non-llaming condilions) for PulyMelhyIMethAcrylale (PMMA]
samples is investigaled. While a small change in Lthe chemical degradation mechanism has a large effect
on the predictions of the mass loss rate, the surface temperature is not affected. The heat transfer
mechanisms appear to have however A Significant effect on hoth quantities of interest, This study
demonstates that the use of complex hemical mechanisms (eg, mulli-step teaction scheme or
uxidative eaction] is not juslified il the mechanisms of Lhe heat transfer are kepl simple. ICis Wherefore
recommended Lo use consistent levels of crudeness dictated by the heat transfer.

2013 The Authors, Published by Flsevier Ltd. cpen seo

e (0 BY-NEKD licenae,
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complexity should be more accurate, However, a direct consequence of this grawth in complexity is the
addition of new parameters and the aecumulation of modelling uneertainty borm from the lack of
knowledye of Uheir values, The large number of parameters and e dificully to quantily their values
[rum direet measurements oflen oblige modellers 1 solve an inverse problem Lo perform he calibration
of their madels, By d nverse modelling, the cquations and the experimental data are consequently
coupled 0 the Harameicf valuss fouted, Tk couplig and 1t £onseqiiuices, Which: are st pisen 1
nored, are investigated here using dil it [evels of model complexity for the simulation in Gpyro of
Leansient pyrolysis of PolyMethyDMethAcrylate in non-burning conditions. Among (e wide range of
possible nudel complexitics, live models with a number of paranict ranging from 3 0 3¢ aw con-
sidered. 1L is observed Lhal models of different complexilies (Le. number of mechanisms and associaled
assumplivng) can achieve similar levels of accuracy by virtue of wsing dilferent parameters values. The
resulls show the sLrong presence of mulliple compensalion ellecls between implemented mechanisms
(e chemistey or heat wanstes ), and that an inceease of model complexity can induce a lavge scatter in

1. Introduction

While the choice of a conceptual' model is a major step in the
prediction of a phenomenon, its justification is often subjective,
and detailed justifications of inclusion or exclusion of the different
mechanisms are infrequent. Assumptions and simplifications decrease
the complexity of a model and define somehaw its limitations. The
implicit hypothesis that models with a higher number of mechanisms
reproduce more accurately the reality has led computational madel-
ling in general and fire modelling in particular to undergo recently a
large growth in complexity [2-4]

Chwif et al. |5] have listed some of the reasons for this growth in
complexity. Among the non-technical reasons, they highlight the

¢ Corresponding author a2 Departnent of Mechanical Fogineering, Tuperial
ollege tondan, Lordan SU67 207, UK. Tol: +44 20 7504 7036
tcll addresses: whal@ed acuk (N, Bal), greindinperial. sk (G, Reinl
" Note the difference between a canceptual model and s programimed code
versiar. According to the 150 standard 15730:2008 1] a cznceptual madel is the
“description of all tion, mathematical modelling cata an
cquations that descril hysical system or process af interest™, It is called
wadel herealler for sinplis

“include all” syndrome and the “possibility™ factor, The farmer is the
consequence of the inexperience of the modellers who might feel
insecure and include the maximum number of mechanisms just in
case. The latter is due to the increasing computational power available
which makes possible to include a significantly higher number of
mechanisms withoul increasing the running time. One example of the
technical reasons listed is the willingness of gathering the needs of
several users, thus increasing the scope of the model and the number
of mechanisms.

However, as the global level of complexity increases in models,
the number of inpul parameters required increases as well, These
parameters could be, for example, physical properties {ar effective
properties), mathematical constants, experimental constants or
calibracion factors, and all carry some degree of uncertainty. Their
respective uncertainty accumulates in the model and contributes
1o the global uncertainty associated with the numerical predic
tions, The discrepancy between the experiments and the predic-
tions is a combination of errors due to the lack of important
mechanisms (continueus line in Fig. 11 and the parameter uncer-
tainty {dashed line in Fig. 1) |6,7].

An equilibrium is therefore required between the error related
to the simplicity of the model equations and the prediction
uncertainty in order to find an appropriate level of model com
plexity as shown in Fig, 1. The parameter uncertainty can be
reduced by a calibration process, decreasing the resulting

779-7117 = 2013 The Authors. Published by Flsevier L1, Crsm recass anser (6 DN ioemse

trp: b do org/ 10.1016/] firesaf 2013.08.015

Lhe parameters values faund, We recormend the use of larger data sets from difle
1 boundary condlitions) and of dilferent nature (e,
Lemperature) L breals down Lhe compensation effec
@ 2015 The Authors. Published by Elsev

provedures (e diffe
instead of only sucfas

L experimental

. in-depth lemperature profile

found in Lhis sludy.

r Lid. This is an upen access arlicle under the CC BY license
(http:fjereativecommons org/licenses by[4.0f).

1. Tntreduction

Despite the extensive usc and constant development of fire
modelling tools, the current state of the art is still not capable of
predicting fire groweh rate from first principles. The pyrolysis
process of the candensed phase represents one of the main chal

lenges related to this problem. It is a key phenomenon in solid
ignition, flame spread and therefore in the global undersranding of
fire behaviour. Advances in pyrolysis modelling during the last
decade have mainly resulted in an increase of the number of
physical and chemical mechanisms implemented in the models.
“This stems from the implicit assumption that models with a higher
level of complexity should be more accurate, However, a direct
consequence of this growth in complexity is the addition of new

* Comespanding authar,

Eomeil addvess: rein@imperialacuk {G. Rein).

ht . firesal2015.02.012
D378 7112} 2015 The Authors, Tubl

parameters. The uncertainty associated with each of these para
meters is propagated to the output via their sensitivity [1]. kx-
amples are available in Refs. [2,3]. The growth of complexity might
influence therefore the global modelling uncertainty.

The predictive capabilities of acamputational model isfunction
on three main components: the equations of the model, the input
parameters, and the experimental data used to validate the model.
The equations, directly function of the assumptions performed,
describe mathematically the physical and chemical mechanisms
which are then solved in time based on the assumed boundary
conditions. The input parameters ate a set of values required to
perform a simulation, This set is composed of material properties.
{e.g. kinetic triplet, attenuation coefficient), initial and boundary
conditions (e.g, incident heat flux, sample thickness, convective
cooling) and mathematical artefacts (e.g. grid size and time steps).
The experimental data is made ol the measurements Lo which the
model predictions are to be compared (e.g. mass loss Tate, surface
temperature and in-depth temperature profile],

bed by Elsevier Lid. This is an open access article under the CCBY license {http: fcreativecommons org/licenses/by/4.0).
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Computational Pyrolysis
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Measurements vs. Predictions

3 Experiments:
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Complexity Growth

Models for PMMA:
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Error

Error due to incomplete mechanisms
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Mechanism sensitivity: methodology

<> Model M. Mainly two types of assumptions:
Heat transfer Chemistry
X | Assumption X assumptions assomptions

@ Model M,,, Taxonomy a




Mechanism sensitivity: qualitative results

Experiments:
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Mechanism sensitivity: quantitative results
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Heat transfer Chemistry

This taxonomy does not allow to evaluate influence of heat transfer on MLR



Mechanism sensitivity: new taxonomy
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With full chemistry, error on T, increases to 100% with heat transfer assumptions alone.
Accuracy of the predictions related to the crudeness of heat transfer mechanisms



Balance between model complexity and
uncertainty

For low level of complexity, the prediction accuracy is controlled by
the lack of important mechanisms.

Error

Complexity /
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Calibration by Inverse modelling: results
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(compensation effects).

of complexity, the same accuracy can be obtained

O The best fit of M14 and M10 do not manage to predict Ts >370 °C.
— The calibration cannot always reduce the prediction error.



Calibration by Inverse modelling

M, Most complete model (Lautenberger and Fernandez-Pello, 2009 Fire Saf. J.)
M, = M, without momentum conservation

M,, = M, without detailed heat transfer

M, = M, with 1-step reaction scheme

M,, = inert solid without detailed heat transfer
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Balance between model Complexity and
uncertainty

For high level of complexity, the prediction accuracy is controlled by
the input parameter uncertainty.

300 Reaction scheme / Sensitivity O.; e v
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Error

Balance between model Complexity and
uncertainty

Here be appropriate level of complexity ...

Appropriate level of
complexity
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Uncertainty

Complexity /



Error

Balance between model complexity and
uncertainty

Here be appropriate level of complexity ...

which evolves with the size of experimental data set.

Appropriate level of
complexity

Uncertainty

Complexity /



Concluding Remarks

» Pyrolysis is a function heat transfer and chemical
kinetics. But accuracy of the predictions related to the
crudeness of heat transfer. Keep chemistry as simple
as heat transfer.

» Balance needed between model complexity and
modelling uncertainty.

» This balance depends on the quantity and quality of
the experimental data available.

Poor and Scarce data = only simple models are justified

Good and Abundant data = more complex models are justified

» Corollary: we need better understanding of pyrolysis
so we can provide better predictive tools of fire.



W @ImperialHazelab

Scale field scale

km — ,

cm =

EPSRC

Engineering and Physical Sciences

IMPERIAL
R «ELAB

Iab‘ z

| _1?—““‘@7 ,;ﬁ q

et

ity e uanuchore of modeen Sy

)

SCiz

. p——

Imperial College
London

nus

g

E———

iy o hastcs comoe £
mare et 1 lpete

o
.'x'lE)‘::u I 1L
v Gulliermo Beln L_“:: : i ¢

1 help reduce the worldwide o
burden of fires, protect peopl
their property and the
environmaent

1 #tudy the fargest fires oa
L\ Esmih, smouldering peatiands,
- ursberstand the

IMPERIAL
HAZELAB

ersee arur B

Research Council
’ iy Q*st!’%’ O ROYAL R ?
o cerig SEPE (& [h] Vi oo R
ra Engroaring A Fieo S Vo 0

The Leverhulme Trust




Experimental Pyrolysis - Spectral sources
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Bal, et al., International Journal of Heat and Mass Transfer 61, pp. 742-748, 2013.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.02.017



Experimental Pyrolysis - PMMA
Unexpected slower ignition when
radiation source is changed

According to the state of the art of fire science, the pyrolysis behaviour of the
PMMA sample should had been exactly the same under the two heat sources.
What is causing this repeatable observation?

Exposed to 20kW/m? in cone calorimeter  Exposed to 20kW/m? tungsten lamps

@; Girods et al., Fire Safety Science 10: 889-901, 2011. http://dx.doi.org/10.3801 /IAFSS.FSS.10-889
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