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8.1 Introduction 


EFD page 181-183 

The purpose of Chapter 8 is to calculate smoke filling time or final smoke layer height. We will consider two cases: Closed room (with small leakages) and room with large openings at floor level. 
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8.2 Conservation equations for a Control Volume 

	The conservation of mass 


EFD page 183-184 

The goal is to understand equation 8.3. 
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	is the total volume (integrating over x, y, z).
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	is the total mass, assuming  to be the same in the whole control volume.
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	is the rate of change of mass in the control volume.

	[image: image5.png]



	is the total area of openings, through which flow occurs.
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	is the net flow rate (m3/s) normal to the opening surface.


	Example: 
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Note: Usually, in our applications, the volume is given and the opening surface area is given. You therefore don't need to integrate to calculate volume or area. 



The important thing is to apply the right density and velocity to it's corresponding opening, and the right density to it's corresponding volume. 

	Some thermodynamic properties 


EFD page 184-187
The total energy of a system is equal to the sum of the internal energy (rotation, translation and vibration of molecules), the kinetic energy and potential energy: 

E = U + KE + PE


We are only interested in changes in total energy. Changes i kinetic and potential energy are negligeble, so we can write: 

E = U  (in J)



Specific internal energy is u=U/m (in J/kg). This is the energy content of a unit mass, written as (from classical thermodynamics): 

u=cv(T-Ta) 


where cv is the specific heat at constant volume (in J/kg). 

Enthalpi is the sum of the internal energy and the pressure work, so h=u+P/o . 
This is often given as 

h=cp(T-T0)


where cp is the specific heat of constant pressure (in J/(kgK)). 
The gas constant for air is R=287 (J/(kgK)) (hot smoke is mostly air). 

The ideal gas law can be written: 

P=RT

	Conservation of energy 


EFD page 187-190 

The conservation of energy is given by Eqn. 8.14 (in EFD). 

The main differnece between this and the conservation of mass (as discussed above) is that earlier the units of the terms were kg/s. Now we have multiplied by the internal energy, J/kg, so each term in Eqn. 8.14 has units of kg/s·J/kg = J/s = W. 
We have also introduced the energy release rate and the work done. 

Work: In thermodynamic systems work is typically divided into shaft work (mechanical devices), pressure work (pressures acting on the surface, like when blowing up a balloon) and shear force work (friction force due to flow and surface interactions). 
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In our applications [image: image12.png]
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can be neglected so we will concentrate on the pressure work, [image: image14.png]


. 

Pressure work per unit time is written 
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We can now write Eqn. 8.19. 

Note that the second and the fourth term of Eqn. 8.19 can be combined in Eqn. 8.20. 

The term u+P/=h (Eqn. 8.6) leading to Eqn. 8.21, the energy conservation equation, will be used in the following. 


8.3 Pressure rise in closed room 



In this chapter we will derive expressions for calculating pressure rise in closed compartments and compartments with leaks. The expressions are very approximative. 

The main prupose is to show the assumptions that can be made with regards to pressure, so we can use those assumptions when setting up equations for smoke filling. 

Sealed compartment 
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	Consider a completely sealed compartment with a fire.
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	High pressure is reached in seconds. Equation 8.24 can be useful to approximate the pressure build-up in a sealed compartment.
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	The pressure build-up will cause leakage (breakage of windows etc.). Completaly sealed compartments are rare in practice.




Compartment with leaks 
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	In a normal building compartment leakage will occur around doors, windows, through wentilation ducts etc.
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	The pressure rise will reach a constant value (P) in a matter of seconds, approximated by Equation 8.32. One major conclusion is that dP/dt can be assumed to be zero in simple calculations.


	Sealed compartment


EFD pages 190-192 

How to derive Equation 8.24? 

Starting point: The conservation of energy, Eqn. 8.21. Sealed compartment => no flow through openings => Equation 8.22. 

Observe that  [image: image21.png]Il e sty = p v
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   and u=cv(T-T0). 

Hint: 
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	Compartment with leaks


EFD pages 192-196 

The conservation of energy will result in the surprisingly simple Equation 8.31, due to the assumption dP/dt = 0. This can also be expressed in terms of pressure as in Eqn. 8.32 (having added the flow coefficient, Cd). 

Important note on pressure 

Note that the treatment here assumes a single pressure P in the whole compartment. We call this the dynamic pressure. The hydrostatic pressure difference across the opening height is neglected. 
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	Large openings (Chapter 5, 6 and 8.5)
  =>   no dynamic pressure build-up
  =>   hydrostatic pressure difference across opening considered.
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	Leakage openings (Chapter 8.3)
  =>   Large dynamic pressure build-up
  =>   hydrostatic pressure difference across openings neglected

See Examples 8.1 and 8.2.




Important note on temperature 

We have assumed that the gas flowing out through the compartment leaks has a constant temperature at all times, Te. 

If the leakage is assumed at floor level only cold air flows out and Te = Ta. 

If the leakage is at the ceiling then Te must be assumed as some constant hot gas temperature, Tg. 

The leakage must therefore be positioned beneath the hot layer at all times (only cold air flowing out) or be positioned in the hot layer at all times (only hot smoke flowing out). 


8.4 Smoke filling of an enclosure with leaks 

	Small leakages at floor level 


EFD pages 196-200 

The conservation laws are now expressed in terms of height times area (z*S) instead of volume (V). 

The conservation of mass is applied to the lower layer: 
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	The decrease of mass in the lower layer
	= 
	mass flow rate through opening
	+ 
	mass flow rate out through plume
	=> 
	  Eqn 8.33




This leads to a differential equation for the smoke layer height, in terms of dz/dt, Eqn. 8.35. 

We now wish Eqn. 8.35 to be valid for all heights, energy release rates and times. We therefore introduce 

1. dimensionless height, y 

2. dimensionless energy release rate [image: image26.png]



3. dimensionless time  


This results in Equation 8.39 which must be solved numerically or graphically. Figure 8.9 shows the graphical solution. 

	Small leakages at ceiling level 


EFD pages 200-201 

The differential equation becomes simpler if [image: image27.png]


. Note that our Control Volume is the lower layer, no cold air exits and [image: image28.png]


. The fact that there is leakage of hot gases from the upper layer is not relevant. 

This leads to Equation 8.41. 

	Estimating gas teperatures (floor leak case) 


EFD pages 202-203 

The first law of thermodynamics leads to Eqn. 8.45 (which in non-dimensional terms becomes Eqn. 8.46), allowing g to be calculated (and therefore Tg). 

Note that these equations grossly over-estimate the hot gas temperature since no heat losses are taken into account. 

	Limitations 


EFD pages 203-204 

Note the limitations listed in Section 8.4.4. 

The most important is the weak plume (weak fire source) assumption => do not use this method for cases where [image: image29.png]


< 0.05. 


8.5 Smoke control in large spaces 



Why large spaces? 
Because we will assume that there is no dynamic pressure build-up (due to large leakages or opening areas). 

Flow through openings will be controlled by hydrostatic pressure differences across the openings ( see earlier figure ). 

We will consider two different ways of solving the mass and energy balances: 

	     The non-steady problem
	     The steady-state problem

	· No outflow of hot gases. 

· [image: image30.png]


can be constant or increasing with time. 

· g is assumed constant at all times. 
	1. Gives smoke layer height at long times. 

2. [image: image31.png]


must be constant. 

3. Solutions given for 3 cases; case 1, case 2 and case 3. 


	Non-steady smoke filling 


EFD pages 204-209 

The mass balance and energy balance lead to two analytical expressions for z and g (through some important assumptions). 

These two must be solved iteratively to obtain a solution (see calculational procedure on page 8-31). 
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Note: For some cases it is difficult to iterate forth a solution; Equations (8.52) and (8.54) may not balance well and g may result in an unrealisticly low value (extremely high temperatures). This may be due to: 

· We have hot taken account of heat losses to surfaces. This may cause exsessive gas temperatures, especially at long times. 

· For relatively high [image: image33.png]


 in a relatively small volume, the constant g assumption is not realistic. 

	Smoke control - the steady-state problem 


EFD pages 209-211 

By considering steady-state (constant smoke layer height at long times) the mass and energy balances result in analytical expressions allowing direct solutions. 

We consider 3 cases:

	CASE 1:
	Ceiling vent, natural ventilation.

	CASE 2:
	Mechanical ventilation of hot gases.

	CASE 3:
	Pressurization of lower layer by mechanical ventilation.



Mass balance: Note that we are considering steady-state => inflowing mass = mass transported by plume = outflowing mass (see Eqn (8.57)). 

Energy balance: Note that we shall now also take account of heat losses to walls see Eqn (8.58). From classical Heat Transfer, Eqn (8.59) gives the heat flux through boundaries. Therefore the heat transfer coefficient can be written as Eqn (8.61) for a semi-infinite solid. This leads to an equation for Tg (Eqn (8.62)). 

	CASE 1: Natural ventilation from upper layer 


EFD pages 212-215 

Assume we have a design situation where we know the smoke layer height z (or rather, our design demands that the smoke layer never reaches further than a given height z). We ask: What is the required ceiling vent area, AE? 

To calculate AE we need to know P at the openings. But the neutral layer height HN, is unknown so some assumption must be made to calculate P (upper and lower opening). 

We assume steady-state so:  Mass in = mass out = mass flow in the plume at height Z. 
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HN is unknown. Therefore we have to concentrate on the pressure differences up to the height Z and HE-Z (since these heights are known). 

	(1)
	Pl is due to the hydrostatic pressure difference over the height (HN-Z), HN is not known. However, [image: image35.png]


is known (by calculating [image: image36.png]


) => vd can be calculated. This leads to Eqn (8.64) for Pl. 
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	(2) + (3)
	The pressure difference over (2) and (3) due to the height HE-Z is (a-g)g(HE-Z). 

The pressure difference at the ceiling is therefore equal to the pressure difference: 
(2)+(3)-(1) or (a-g)g(HE-Z) - Pl. 
Mass flow through the upper opening is therefore given by Eqn (8.67). 

The calculation procedure is given on page 8-37. 



Note that Pu can become negative and the problem cannot be solved. This can be amended by 

1. Changing the design criteria (making Z smaller). 

2. Increasing the inlet area AD. 

Also note that there must be a reasonable balance between AE and AD. 
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For a solution AE > b and AD > a. 

Note that designing close to points a and b may result in very large values of AE or AD. 

It is advisable to check the sensitivity of the design calculations to small variations in AD and AE. 

	CASE 2: Mechanical ventilation from upper layer 


EFD pages 215-216 

The theory and calculational procedure are very similar to Case 1. 

Note that the capacity of mechanical ventilation is often given in m3/s so the density of the hot gases must be known to express this in terms of mass. 

	CASE 3: Pressurization by mechanical ventilation


EFD pages 216-218 

This case is very similar to Case 1.
