Cone Calorimeter

Fundamental Issues

 Heat Release Rate is obtained indirectly by measuring O₂ consumption

Mass loss rate – real time by load cell

Incident heat flux of 0 to 100 kW/m²

O₂ Consumption COMPLETE COMBUSTION

- Main simplifying assumptions:
 - Energy release per unit mass of O₂, constant E =
 13.1 MJ/kg of O₂ consumed
 - Ideal gas law applies
 - O₂ depletion factor assumes each mole of air required for complete combustion is replaced by
 1.105 moles of products

$$n_f + n_{air} = n_p \approx 1.105 n_{air}$$

Energy Released per kg of O₂

HUGGETT, Clayton. 1980. Estimation of rate of heat release by means of oxygen consumption measurements. *Fire and Materials*. **4**(2), pp.61-65.

O₂ Consumption

$$\Delta \dot{m}_{\text{O}_2} = \dot{m}_{\text{O}_2,\text{in}} - \dot{m}_{\text{O}_2,\text{ex}}$$

Calculations

- Oxygen concentration is measured at the exhaust $\Delta \dot{m}_{O_2.ex}$
- Incoming oxygen concentration (air) $\Delta \dot{m}_{O_2.in}$
- Oxygen consumed : $\Delta \dot{m}_{O_2}$

$$\Delta \dot{m}_{\text{O}_2} = \dot{m}_{\text{O}_2.\text{in}} - \dot{m}_{\text{O}_2.\text{ex}}$$

Calculations

The energy release rate can be calculated as:

$$Q = 13.1 \Delta \dot{m}_{O_2}$$
 [MJ]

Experimental Results

• Ideal Scenario:

The Real Scale Application-Large Scale Calorimeter

Aim is

- To introduce the cone calorimeter for determining of
 - -the burning rate
 - -Heat Release Rate
 - -time to ignition

Aim is

- To get a better understanding of
 - -How Heat Release Rate is measured
 - Use of the measured data for calculation

Laboratory work – Cone Calorimeter

- Heat Release Rate
- Ignition Temperature
- Partical board (PB) and porous fiberboard (PF)
- Different effect of the incident radiation

Lab 1. Important information

- Date 2nd and 3rd of October
- Place *Complab*. Fire corner.
- Groups of 3-4 people
- Lab report should be written in ENGLISH and handed in on the course Fronter page.
- Deadline Wednesday the 10th of October
- Approved report will award to group of students 1.5 point.

Groups

Schedule

-2nd of October.

- Group 1 13.00
- Group 3 14.00
- Group 4– 15.00
- -3rd of October.
 - Group 5 10.00
 - Group 6-11.00
 - Group 2–13.00
 - Group 7– 14.00
 - Group 8– 15.00

Questions

- What temperature should be set on the cone to get the incident radiation effect at
 - -20 kW/m^2
 - -40 kW/m^2 ?

(According to the calibration data).

Recordings

Time to ignition	t _{ign PB}	sec
	t _{ign PF}	sec
Samples dimensions (PB and FB)	L*B*H	m
Weight of samples	m	kg
Time of extinguished (PB and FB)	t _{ext, PF}	sec
	t _{ext. FB}	
Heat release rate as a function of time	Q	W/m ²
Peak rates of heat release (PHRR)	$\overset{\cdot}{Q}_{\!\scriptscriptstyle{ ext{mix}}}$	W/m ²
Time of maximum HRR (PHRR)	t _{max HRR}	sec
Average effective heat of combustion	$\Delta H_{eff, average}$	MJ/kg
Mass burning rate	m	g/sec

Ignition theory

• piloted ignition - the surface temperature of 250 °C to 450 °C.

 auto ignition temperature exceeds normally 500 ºC.

Questions

Heat release rate??

Hint: Tsantaridis, L. Reaction to the fire performance of wood and other building products. Doctoral thesis. KTH. 2003

Report

Short and clear

Use in your report

- Diagrams
 - Temperature
 - Heat release rate
 - Burning rate on your choice
- Picture from experiment (take a camera)
- Tables
- Ets